USE OF FACTORIAL DESIGN TO OPTIMIZE THE EFFICIENCY OF BACTERIAL TRANSFORMATION

Authors

  • Gheorghița MENGHIU Department of Biology - Chemistry Faculty of Chemistry, Biology, Geography; Advanced Environmental Research Laboratory, West University, Timisoara, Romania. Email: gheorghita.menghiu@e-uvt.ro. https://orcid.org/0000-0002-6523-5738
  • Lauriana-Eunice ZBÎRCEA Department of Biology - Chemistry Faculty of Chemistry, Biology, Geography; Advanced Environmental Research Laboratory, West University, Timisoara, Romania. Corresponding author: vasile.ostafe@e-uvt.ro. https://orcid.org/0000-0003-1582-7740
  • Vasile OSTAFE Department of Biology - Chemistry Faculty of Chemistry, Biology, Geography; Advanced Environmental Research Laboratory, West University, Timisoara, Romania. Email: vasile.ostafe@e-uvt.ro. https://orcid.org/0000-0003-1352-1115

DOI:

https://doi.org/10.24193/subbchem.2019.2.02

Keywords:

design of experiments; Minitab; Plackett-Burman factorial design; surface response design; competent cell; heat shock transformation

Abstract

A Plackett-Burman factorial design of experiments was created to optimize the protocols of preparation of E. coli DH5α competent cells and transformation of these cells by heat shock method using a chiA_pUC57 plasmid. The numerical parameters to be optimized were: the pH, the concentration of CaCl2, the cell concentration of the culture used for the preparation of the competent cells, the temperature of defrosting of the competent cells, the concentration of plasmid DNA. It was also considered a qualitative factor that might influence the transformation efficiency, namely the use of ultrasound in the heat shock step of transformation protocol. A design of experiments based on 26 experimental values was created. Analyzing this experimental setup by both, Plackett-Burman factorial design and surface response design, it was highlighted that the pH, the concentration of calcium chloride and the concentration of plasmid DNA have a significant influence on the transformation efficiency. The optimal conditions for the preparation and transformation of E. coli DH5α competent cells with chiA_pUC57 plasmid where when the pH of a 40 mM CaCl2 solution was 6, the competent stock cells were thawed slowly on ice and in the heat shock step the cells were subjected to ultrasounds treatment.

 

References

Chan, W.T., C.S. Verma, D.P. Lane, and S.K. Gan, Bioscience Rep, 2013, 33, e00086.

Lim, G., D. Lum, B. Ng, and C. Sam, J Exp Microbiol Immunol, 2015, 19, 1-6.

Liu, X., L. Liu, Y. Wang, X. Wang, Y. Ma, and Y. Li, Pak J Pharm Sci, 2014, 27, 679-684.

Chan, V., L.F. Dreolini, K.A. Flintoff, S.J. Lloyd, and A.A. Mattenley, J Exp Microbiol Immunol, 2002, 2, 207-223.

Campos-Guillen, J., F. Fernandez, X. Pastrana, and A.M. Loske, Ultrasound Med Biol, 2012, 38, 1078-1084.

Morimoto, R.I., Cancer Cell, 1991, 3, 295-301.

Divya Prakash, G., R.V. Anish, G. Jagadeesh, and D. Chakravortty, Anal Biochem, 2011, 419, 292-301.

Van der Rest, M.E., C. Lange, and D. Molenaar, Appl Microbiol Biotechnol, 1999, 52, 541-545.

Tang, X., Y. Nakata, H.-O. Li, M. Zhang, H. Gao, A. Fujita, O. Sakatsume, T. Ohta, and K. Yokoyama, Nucleic Acids Res, 1994, 22, 2857-2858.

Rudchenko, O.N., N.A. Likhacheva, N.V. Timakova, and B.N. Il'iashenko, Genetika, 1975, 11, 101-1019.

Li, X., X. Sui, Y. Zhang, Y. Sun, Y. Zhao, Y. Zhai, and Q.Y. Wang, Afr J Biotechnol, 2010, 9, 8549-8554.

Dagert, M. and S.D. Ehrlich, Gene, 1979, 6, 23-28.

Loske, A.M., J. Campos-Guillen, F. Fernandez, and E. Castano-Tostado, Ultrasound Med Biol, 2011, 37, 502-510.

Zhiming, T., H. Guangyuan, X.L. Kexiu, J.C. Mingjie, C. Junli, C. Ling, Y. Qing, P.L. Dongping, Y. Huan, S. Jiantao, and W. Xuqian, Electron J Biotechnol, 2005, 8, 114-120.

Maeda, S., A. Sawamura, and A. Matsuda, FEMS Microbiol Lett, 2004, 236, 61-64.

Xiaofeng, L., L. Lin, W. Yonggang, W. Xiaoli, M. Yanling, and L. Yunchun, J Chem Pharm Res, 2013, 12, 450-453.

Chan, J., C. Davis, and I. Jokic, J Exp Microbiol Immunol, 2006, 9, 92-96.

Liou, J.T., B.H. Shieh, S.W. Chen, and C. Li, Prep Biochem Biotechnol, 1999, 29, 49-54.

Blazic, M., G. Kovacevic, O. Prodanovic, R. Ostafe, M. Gavrovic-Jankulovic, R. Fischer, and R. Prodanovic, Protein Expres Purif, 2013, 89, 175-180.

Zhou, A., X. Jiang, and X. Xu, BioTechniques, 1997, 23, 592-594.

Aich, P., M. Patra, A.K. Chatterjee, S.S. Roy, and T. Basu, Protein J, 2012, 31, 366-373.

Green, R. and E.J. Rogers, Transformation of chemically competent E. coli, in Methods in Enzymology, J. Lorsch, Academic Press: New York, United States, 2013, Volume 529, 28, p. 329-336.

Carstens, M., M.A. Vivier, and I.S. Pretorius, Transgenic Res, 2003, 12, 497-508.

Stephen, D., C. Jones, and J.P. Schofield, Nucleic Acids Res, 1990, 18, 7463-7464.

O'Sullivan D, J. and T.R. Klaenhammer, Appl Environ Microbiol, 1993, 59, 2730-2733.

Carro, N., I. Garcia, M. Ignacio, and A. Mouteira, Anal Lett, 2012, 45, 2161-2175.

Downloads

Published

2019-06-03

How to Cite

MENGHIU, G. ., ZBÎRCEA, L.-E. ., & OSTAFE, V. . (2019). USE OF FACTORIAL DESIGN TO OPTIMIZE THE EFFICIENCY OF BACTERIAL TRANSFORMATION. Studia Universitatis Babeș-Bolyai Chemia, 64(2), 23–34. https://doi.org/10.24193/subbchem.2019.2.02

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 11 12 13 14 15 16 17 18 19 20 > >> 

You may also start an advanced similarity search for this article.