HPLC-DAD-ESI⁺-MS PHYTOCHEMICAL PROFILES OF SEVERAL ROSMARINUS OFFICINALIS ACCESSIONS FROM SPAIN AS INFLUENCED BY DIFFERENT ENVIRONMENTAL STRESS CONDITIONS

Authors

  • Monica BOSCAIU Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València, España. Corresponding author: carmen.socaciu@usamvcluj.ro. https://orcid.org/0000-0002-9691-4223
  • Oscar VICENTE Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Valencia, España. Corresponding author: carmen.socaciu@usamvcluj.ro. https://orcid.org/0000-0001-5076-3784
  • Inmaculada BAUTISTA Instituto Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, ReForest, Valencia, España. Corresponding author: carmen.socaciu@usamvcluj.ro. https://orcid.org/0000-0003-2977-5136
  • Floricuța RANGA University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania. Email: floricutza_ro@yahoo.com. https://orcid.org/0000-0002-4694-7932
  • Carmen SOCACIU University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania. Email: carmen.socaciu@usamvcluj.ro. https://orcid.org/0000-0002-7352-5057

DOI:

https://doi.org/10.24193/subbchem.2019.3.14

Keywords:

Rosmarinus officinalis; environmental stress; high performance liquid chromatography & mass spectrometry; metabolomic profile

Abstract

Rosemary, a native Mediterranean plant is a well-known source of phytochemicals with antioxidant activity attributed mainly to diterpenoids and flavonoids. The aim of the study was to establish an accurate evaluation of the rosemary metabolite profiles from several accessions under changing environmental conditions (water stress and soil salinity) comparing two sampling seasons (summer vs. spring) from four different habitats in Eastern Spain. The methodology was based on the identification and the quantitative evaluation of phytochemicals (phenolic acid derivatives, flavonoids, diterpenes and triterpenes) by HPLC coupled with diode-array detection and electrospray ionization mass spectrometry (ESI+-MS). Phytochemical profiles were statistically compared by factorial ANOVA, cluster analysis, principal component analysis and univariate analysis (Pearson correlations), that allowed the discrimination between the extract composition in correlation to their habitat and stress conditions. Out of twenty-three compounds identified, the major ones were represented by diterpenoids (carnosic acid, carnosol and oxidized metabolites rosmanol, epirosmanol, rosmadial, rosmanol methyl ether) and flavonoids, which showed significant metabolic regulation induced by water stress. The main conclusion of the work is that the diterpene derivatives and their oxidized metabolites may be considered as optimal biomarkers of the environmental stress in Rosmarinus officinalis.

References

S. Moreno; T. Scheyer; C.S. Romano; A. Vojnov; Free Rad. Res. 2006, 40, 223-231.

B. Bozin; N..Mimica-Dukic; I. Samojlik; E. Jovin; J. Agric. Food. Chem. 2007, 55, 7879-7885.

E. Issabeagloo; P. Kermanizadeh; M. Taghizadieh; R. Forugh; Afr. J. Microbiol. Res. 2012, 6, 5039-5042.

T. Kayashima; K. Matsubara; K.Ayashima; K. Matsubara; Biosci. Biotechnol. Biochem. 2012, 76, 115-119.

S. Habtemariam; Evid. Based Complement. Alternat. Med. 2016, 2680409.

G. Zgórka; K. Glowniak; J. Pharm. Biomed. Anal. 2001, 26, 7987.

J.C. Luis; C.B. Johnson; Span. J. Agric. Res. 2005, 3, 106–112.

European Medicines Agency. Community herbal monograph on Rosmarinus officinalis L. aetheroleum. 2010, Available from: http//www.ema.europa.eu/ WC500101493.pdf

I. Cocan; E. Alexa; C. Danciu; I. Radulov; A. Galuscan; D. Obistioiu; A.A. Morvay; R.M. Sumalan; M.A. Poiana; G. Pop; C.A. Dehelean; Exp. Ther. Med. 2018, 15, 1863-1870.

M.B.Hossain; D.K. Rai; N.P. Brunton; D.A.B. Martin; C. Barry-Ryan; J. Agric. Food. Chem. 2010, 58, 1057610581.

K. Hcini; J.A. Sotomayor; M.J. Jordan; S. Bouzid; Asian J. Chem. part B 2013, 25, 92999301.

A. Vallverdú Queralt; J. Regueiro; M. Martìnez Huélamo; J.F. Rinaldi Alvarenga; L. Leal; N. Lamuela Raventos; Food Chem. 2014, 154, 299307.

S. Munne Bosch; L. Alegre; Planta 2000, 210, 925-931.

M.J. Del Baño; J. Lorente; J. Castillo; O. Benavente García; M.P.Marín; J.A. Del Río; A. Ortuño; I. Ibarra; J. Agric. Food Chem. 2004; 52, 49874992.

C. Bicchi; A. Binello; P. Rubiolo; Phytochem Anal. 2010, 11, 236242.

P. Mena; M. Cirlini; M. Tassotti; K.A. Herrlinger; C. Dall’Asta; D. Del Rio; Molecules 2016, 21, 1576-1587;

M. Herrero; M. Plaza; A. Cifuentes; E. Ibañez; J. Chromatogr. 2010, 1217, 2512–2520.

I. Borrás Linares; Z. Stojanović; R. Quirantes Piné; D. Arráez Román; J. Švarc Gajić; A. Fernández Gutiérrez; A. Segura Carretero; Int. J. Mol. Sci. 2014, 15, 20585–20606.

M. Mulinacci; M. Innocenti; M. Bellumori; C. Giaccherini; V. Martini; M. Michelozzi; Talanta, 2011, 85, 167–176.

C.R.L. Wellwood; R.A. Cole; J. Agric. Food Chem. 2004, 52, 6101–6107.

L. Almela; B. Sánchez Muñoz; J.A. Fernández López; M.J. Roca; V. Rabe; J. Chromatogr. 2006, 1120, 221–229.

M.J. Jordan; V. Lax; M.C. Rota; S. Loran; J.A. Sotomayor; Ind. Crops Prod. 2013, 48, 144152.

D. Meziane Assami; V. Tomao; K. Ruiz; B.Y. Meklati; F. Chemat; Food Anal. Meth. 2013, 6, 282288.

M.H. Mehrizi; H. Shariatmadari; A.H. Khoshgoftarmanesh; F. Dehghani; J. Agr. Sci. Technol.-Iran 2012, 14, 205212.

T. Tounekti; A.M. Vadel; M. Ennajeh; H. Khemira; S. Munné-Bosch; J. Plant Nutr. Soil Sci. 2011, 174, 504-514.

M. Loussouarn; A. Krieger-Liszkay; L. Svilar; A. Bily; S. Birti; M. Havaux; Plant Physiol. 2017, 175, 1381–1394

V. Papageorgiou; C. Gardeli; A. Mallouchos; M. Papaioannou; M. Komaitis; J. Agric. Food Chem. 2008, 56, 7254–7264.

A. Caverzan; A. Casassola; S. Patussi Brammer; In Abiotic and biotic stress in plants. Recent advances and future perspectives. 2016, Arun Shanker, IntechOpen, pp.463-481

A. Fini; C. Brunetti; M. Di Ferdinando; F. Ferrini; M. Tattini; Plant Signal. Behav. 2011, 6, 709711.

K.S. Gould; C. Lister; In Andersen ØM, Marham KR (eds) Flavonoids, chemistry, biochemistry and application, Boca Raton, FL: CRC Press, 2006, 397442.

D. Treutter; Environ. Chem. Lett. 2006, 4, 147157.

B. Winkel-Shirley; Curr. Opin. Plant Biol. 2002, 5, 218223.

M. Di Ferdinando; C. Brunetti; A. Fini; M. Tattini; In Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability, New York: Springer, 2012, 159179.

J. Mierziak; K. Kostyn; A. Kulma; Molecules 2014, 19, 16240-16265;

J. Grassmann; Vitam. Horm. 2005, 72, 505535.

I. Bautista; M. Boscaiu; A. Lidón; J.V. Llinares; C. Lull; M.P. Donat; O. Mayoral; O. Vicente; Acta Physiol. Plant. 2016, 38, 9-16.

Y. Zhang; J.P. Smuts; E. Dodbiba; R. Rangarajan; J.C. Lang; D-W. Armstrong; J. Agric.Food Chem. 2012, 60, 9305–9314.

N. Bai; K. He; M. Roller; C. Lai; X.Shao; M. Pan; C.T.Ho; J. Agric. Food Chem. 2010, 58, 53635367.

K. Kiarostami; R. Mohseni; S. Azra; J. Stress Physiol. Biochem. 2010, 6, 114-122.

S. Birtić; P. Dussort; F.X. Pierre; A.C. Bily; M. Roller; Phytochemistry 2015, 115, 9–19.

L. Yang; K.S. Wen; X. Ruan; Y.-X. Zhao; F. Wei; Q.Wang; Molecules 2018, 23, 762-769.

Downloads

Published

2019-09-30

How to Cite

BOSCAIU, M. ., VICENTE, O. ., BAUTISTA, I. ., RANGA, F. ., & SOCACIU, C. . (2019). HPLC-DAD-ESI⁺-MS PHYTOCHEMICAL PROFILES OF SEVERAL ROSMARINUS OFFICINALIS ACCESSIONS FROM SPAIN AS INFLUENCED BY DIFFERENT ENVIRONMENTAL STRESS CONDITIONS. Studia Universitatis Babeș-Bolyai Chemia, 64(3), 163–180. https://doi.org/10.24193/subbchem.2019.3.14

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 13 14 15 16 17 18 19 20 21 22 > >> 

You may also start an advanced similarity search for this article.