MATHEMATICAL APPROACH FOR PILOT-SCALE EXPERIMENT SETUP ON BIOGAS PRODUCTION

Authors

  • Adrian Eugen CIOABLĂ Politehnica University of Timisoara, Faculty of Mechanical Engineering, 1 Mihai Viteazu blvd., RO-300222, Timisoara, Romania https://orcid.org/0000-0001-6261-0064
  • Mădălina IVANOVICI Politehnica University of Timisoara, 2 Piata Victoriei, RO-300006, Timisoara, Romania; National Institute for Research and Development in Electrochemistry and Condensed Matter, 144 Aurel Paunescu Podeanu str., RO-300569, Timisoara, Romania
  • Gabriela-Alina DUMITREL Politehnica University of Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 6 Vasile Parvan blvd., RO-300223, Timisoara, Romania. *Corresponding author: alina.dumitrel@upt.ro https://orcid.org/0000-0002-2097-5230
  • Laurențiu-Valentin ORDODI Politehnica University of Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 6 Vasile Parvan blvd., RO-300223, Timisoara, Romania
  • Delia-Gabriela CĂLINOIU Politehnica University of Timisoara, Faculty of Electrical and Power Engineering, 2 Vasile Parvan blvd., RO-300223, Timisoara, Romania https://orcid.org/0000-0002-9598-4043
  • Gavrilă TRIF-TORDAI Politehnica University of Timisoara, Faculty of Mechanical Engineering, 1 Mihai Viteazu blvd., RO-300222, Timisoara, Romania
  • Vasile PODE Politehnica University of Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, 6 Vasile Parvan blvd., RO-300223, Timisoara, Romania

DOI:

https://doi.org/10.24193/subbchem.2020.1.19

Keywords:

biogas production, agricultural biomass, pilot scale, co-digestion, statistics

Abstract

In this work, pilot scale experiments were carried to evaluate the biogas production through anaerobic co-digestion for two different mixtures of feedstock based on agricultural biomass and agricultural waste. The first mixture consisted of degraded row barley and wastewater from treatment plant and the second mixture contained wheat, corn grains and shell sunflower seeds with wastewater from treatment plant. The temperature, pH, pressure and the amount of the produced biogas were daily monitored for 26 days and the results of the two experimental charges were assessed and compared using statistical analysis: the box plot method and summary statistics. The latter feedstock mixture showed a better production of biogas for which the mean value of produced biogas amount is 18.43 m³, whereas the mean value of the biogas generated for the former feedstock mixture was 14.95 m³.

References

L. C. Grangeiro; S. G. Coêlho de Almeida; B. Sampaio de Mello; L. T. Fuess; A. Sarti; K. J. Dussán; New trends in biogas production and utilization. In Sustainable Bioenergy: Advances and Impacts, 1st ed.; M. Rai, A. P. Ingle Eds.; Elsevier, 2019, Chapter 7, pp. 199-233

S. Achinas; V. Achinas; G. J. W. Euverink; Engineering, 2017, 3, 229-307

P. Baltrėnas; A. Misevičius; J. Environ. Health Sci. Eng., 2015, 13

M. M. Kabir; K. Rajendran; M. J. Taherzadeh; I. Sárvári Horváth; Bioresour. Technol., 2015, 178, 201-208

B. Kampman; C. Leguijt; T. Scholten; J. Tallat-Kelpsaite; R. Brückmann; G. Maroulis; J. P. Lesschen; K. Meesters; N. Sikirica; B. Elbersen; Optimal use of biogas from waste streams. An assessment of the potential of biogas from digestion in the EU beyond 2020, March 2017. Accessed on: June 29, 2019. [Online]. Available at: https://ec.europa.eu/energy/en/studies/optimal-use-biogas-waste-streams-assessment-potential-biogas-digestion-eu-beyond-2020

Directive (EU) 2015/1513 of the European Parliament and of the Council Amending Directive 98/70/EC Relating to the Quality of Petrol and Diesel Fuels and Amending Directive 2009/28/EC on the Promotion of the Use of Energy from Renewable Sources (2015), Official Journal of the European Union L239, p. 1-29

K. C. Surendra; D. Takara; A. G. Hashimoto; S. K. Khanal; Renew. Sust. Energ. Rev., 2014, 31, 846-859

G. Merlin; H. Boileau; Anaerobic Digestion of Agricultural Waste: State of the Art and Future Trends. In Anaerobic Digestion: Types, Processes and Environmental Impact, A. Torrles Eds.; Nova Science Publishers, New York, USA, 2013

F. O. Obi; B. O. Ugwuishiwu; J. N. Nwakaire; NIJOTECH, 2016, 35, 957-964

G. V. Nallathambi; Biomass Bioenerg., 2004, 26, 389–99

M. M. Søndergaard; I. A. Fotidis; A. Kovalovszki; I. Angelidaki; Energ. Fuel., 2015, 29, 8088–8094

R. A. Labatut; L. T. Angenent; N.R. Scott; Bioresour. Technol., 2011, 102, 2255–2264

P. Tsapekos; P. G. Kougias; I. Angelidaki; Energ. Fuel., 2015, 29, 4005–4010

Y. Li; R. Zhang; G. Liu; C. Chen; Y. He; X. Liu; Bioresour. Technol., 2013, 149, 565–569

K. Hagos; J. Zong; D. Li; C. Liu; X. Lu; Renew. Sust. Energ. Rev., 2017, 76, 1485-1496

T. Dias; R. Fragoso; E. Duarte; Bioresour. Technol., 2014, 164, 420-423

J. H. Ebner; R. A. Labatut; J. S. Lodge; A. A. Williamsona; T. A. Trabold; Waste. Manage., 2016, 52, 286-294

A.E. Cioabla; G.-A. Dumitrel; I. Ionel; Rev. Chim. – Bucharest, 2017, 68(11), 2614-2617

G.-A. Dumitrel; A.E. Cioabla; I. Ionel; L.A. Varga; Rev. Chim. – Bucharest, 2017, 68(6), 1294-1297

A.E. Cioablă; G.-A. Dumitrel; A.-M. Pana; F. Popescu; D. Lelea; A. Tenchea; L. I. Dungan; VIII International Conference Industrial Engineering and Environmental Protection 2018 (IIZS 2018) October 11-12th, 2018, Zrenjanin, Serbia, 362-367

S. Xie; F. I. Hai; X. Zhan; W. Guo; H. H. Ngo; W. E. Price; L. D. Nghiem; Bioresour. Technol., 2016, 222, 498-512

Downloads

Published

2020-03-20

How to Cite

CIOABLĂ, A. E., IVANOVICI, M., DUMITREL, G.-A., ORDODI, L.-V., CĂLINOIU, D.-G., TRIF-TORDAI, G., & PODE, V. (2020). MATHEMATICAL APPROACH FOR PILOT-SCALE EXPERIMENT SETUP ON BIOGAS PRODUCTION. Studia Universitatis Babeș-Bolyai Chemia, 65(1), 245–252. https://doi.org/10.24193/subbchem.2020.1.19

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 8 9 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.