SURFACE CHARACTERIZATION AND CYTOTOXICITY ANALYSIS OF THE TITANIUM ALLOYS FOR DENTISTRY

Authors

  • Paula Argentina JIMAN Iuliu Hatieganu University of Medicine and Pharmacy, Faculty of Dentistry, 31 A. Iancu Street, RO-400083, Cluj-Napoca, Romania; Technical University of Cluj-Napoca, Faculty of Materials Science and Engineering, Cluj-Napoca, Romania
  • Marioara MOLDOVAN Babeş-Bolyai University, Institute of Chemistry Raluca Ripan, 30 Fantanele Str., RO-400294, Cluj-Napoca, Romania https://orcid.org/0000-0001-9714-4809
  • Codruta SAROSI Babeş-Bolyai University, Institute of Chemistry Raluca Ripan, 30 Fantanele Str., RO-400294, Cluj-Napoca, Romania. *Corresponding author: codruta.sarosi@ubbcluj.ro https://orcid.org/0000-0003-2960-9832
  • Alexandrina MUNTEAN Iuliu Hatieganu University of Medicine and Pharmacy, Faculty of Dentistry, 31 A. Iancu Street, RO-400083, Cluj-Napoca, Romania https://orcid.org/0000-0002-3960-6910
  • Andreea Simona POP Iuliu Hatieganu University of Medicine and Pharmacy, Faculty of Dentistry, 31 A. Iancu Street, RO-400083, Cluj-Napoca, Romania
  • Viorica TARMURE Iuliu Hatieganu University of Medicine and Pharmacy, Faculty of Dentistry, 31 A. Iancu Street, RO-400083, Cluj-Napoca, Romania
  • Catalin POPA Technical University of Cluj-Napoca, Faculty of Materials Science and Engineering, Cluj-Napoca, Romania https://orcid.org/0000-0003-4188-1169
  • Aurel George MOHAN University of Oradea, 1 Universitatii Street, RO-410087, Oradea, Romania

DOI:

https://doi.org/10.24193/subbchem.2020.1.12

Keywords:

Ti-6Al-4V surface treatment, electrochemical processing, dental implant, cytotoxicity, SEM.

Abstract

Three methods of treating the Ti and Ti-6Al-4V alloy surface used as dental implants have been tried both to increase the corrosion resistance and to create diffusion barriers, which prevent the release of toxic ions in the body, at the separation surface, implant living tissue. The anticorrosive performances of the experimental oxide films, realized on the pure Ti and Ti-6Al-4V alloy were evaluated electrochemically by cyclic voltammetry after immersion of samples in Ringer’s solution at 37°C. The A2-Ti sample (Ti-6Al-4V alloy anodized with H3PO4, 1N, and citric acid, 20 g/l electrolyte solution) shows lower viability values, compared to the other samples, with a tendency to decrease after 48h of incubation. The cytotoxic effect is slightly higher in A1-Ti (Ti-6Al-4V alloy anodized with 0.6% H3PO4 electrolyte solution) compared to Ti over a period. This can be attributed to the presence of aluminium and vanadium. The results revealed that the specific processing of titanium and titanium alloy (Ti-6Al-4V) by obtaining an oxide layer influence the toxicity that is stabilize and decrease with time, which makes to be used in dental implantology.

References

D. Bunea, A. Nocivin, Materiale biocompatibile, Ed. BREN, Bucuresti, 1998, pp. 65-74.

M. Kulkarni, A. Mazare, P. Schmuki, A. Iglič, Biomaterial surface modification of titanium and titanium alloys for medical applications, in Nanomedicine, One Central Press, United Kingdom, 2014, Chapter 5, pp. 111-136.

V. Antoniac, O. Trante, C. Trante, Materiale biocompatibile utilizate la realizarea implanturilor ortopedice, in Buletin Ştiinţific–Conferinţa Naţională de Ştiinţa şi Ingineria Materialelor, BRAMAT’99, 1999, vol. I, ISBN 973-98797-0-5, pp.270-273.

D. Leordean, S. A. Radu, D. Fratila, P. Berce, Int. J. Adv. Manuf. Tech., 2015, 79, 905-920.

M. Bruschi, D. Steinmüller-Nethl, W. Goriwoda, M. Rasse, J. Oral Implantol, 2015, 527426, http://dx.doi.org/10.1155/2015/527426.

A.V. Burde, S. Cuc, A. Radu, M.A. Rusu, C.S. Cosma, D. Leordean, Studia UBB Chemia, 2016, 61, 205-214.

C. Cosma, N. Balc, M. Moldovan, L. Morovic, P. Gogola, C. Miron-Borzan, J. Optoelectron. Adv. M., 2017, 19, 738-747.

S. L. Assis, S. Wolynec, I. Costa, Eletrochim. Acta, 2006, 51, 1815-1819.

T. Chaturvedi T. Indian J. Dent. Res., 2009, 20, 91-98.

M. Nica, B. Cretu, D. Ene, I. Antoniac, D. Gheorghita, R. Ene, Materials 2020, 13, 1201; doi:10.3390/ma13051201

T.D. Morgan, M. Wilson, J. Appl. Microbiol., 2001, 91, 47-53.

M. Hajisafari. A. Z. Bidaki, S. Yazdani, Adv. Mater. Process., 2017, 3, 12-22.

S. Cavalu, I. V. Antoniac, L. Fritea, I. M. Mates, C. Milea, V. Laslo, S. Vicas, A. Mohan, J. Adhes. Sci. Technol., 2018, 32, 2509-2522.

O. H. Orasan, A. M. Chisnoiu, M. L. Dascalu (Rusu), O. Pastrav, M. Pastrav, M. Moldovan, R. Chisnoiu, Studia UBB Chemia, 2017, 3, 215-223.

V.A. Barão, M.T. Mathew, W.G. Assunção, J. C. Yuan, M. A. Wimmer, C. Sukotijo, Clin. Oral Implants Res., 2012, 23, 1055-1062.

D. Sucala, C. Sarosi, C. Popa, I. Cojocaru, M. Moldovan, A. G. Mohan, Studia UBB Chemia, 2018, 63, 71-81.

C. Castellani, R. A. Lindtner, P. Hausbrandt, Acta Biomater., 2011,7, 432-440.

I. Antoniac, Fundamental properties of bioceramics and biocomposites, in Handbook of Bioceramics and Biocomposites, Springer International Publishing, 2016, Vol. 1-2, Chapter 1, pp.35-58.

I. Antoniac, C. Sinescu, A. Antoniac, J. Adhes. Sci. Technol., 2016, 30, 1711-1715.

I. Karacan, B. Ben-Nissan, H. A. Wang, A. Juritza, M. V. Swain, W. A. Müller, J. Chou, A. Stamboulis, I. J. Macha, V. Taraschi, Mater. Sci, Eng. C., 2019, 104, 109757.

A. Saplontai-Pop, M. Moldovan, R. Oprean, O. Orasan, S. Saplontai, C. Ionescu, Studia UBB Chemia, 2014, 59, 39-46.

M. Ahmad, D. Gawronski, J. Blum, J. Goldberg, G. Gronowicz, J. Biomed. Mater. Res., 1999, 46, 121-131.

X. Liu, S. Chen, J. K. H. Tsoi, J. P. Matinlinna, Regen. Biomater., 2017, 315. doi: 10.1093/rb/rbx027.

J. Curtin, M. Wang, H. Sun, Int. J. Oral Max. Surg., 2017, 46, 94-99.

A. D. Tinoco, M. Saxena, S. Sharma, J. Am. Chem. Soc., 2016, 138, 5659-5665.

L.Silaghi-Dumitrescu, A. M. Mihailescu, A. Muntean, C. Sarosi, D. Prodan, M. R. Simu, M. Moldovan, A. Kui, M. Pastrav, Studia UBB Chemia, 2019, 4, 107-119.

A. Han, J. K. H. Tsoi, F. P. Rodrigues, Int. J. Adhes. Adhes., 2016, 69, 58-71.

A. Wennerberg, L. M. Svanborg, S. Berner, Clin. Oral Implants Res., 2013, 24, 203-209.

I. M. Hamouda, E. T. Enan, E. E. Al-Wakeel, Int. J. Oral Max. Impl., 2012, 27, 776-784.

Y. T. Sul, C. B. Johansson, Y. Kang, Clin. Implant Dent. R., 2002, 4, 78-87.

H. Tschernitschek, L. Borchers, W. Geurtsen, Quintessence Int., 2005, 36, 523-530.

N. Sykaras, A.M. Iacopino, V. A. Marker, Int. J. Oral Max. Impl., 2000, 15, 675-690.

A. D. Tinoco, M. Saxena, S. Sharma, J. Am. Chem. Soc., 2016, 138, 5659-5665.

A. Saplontai-Pop, A.Mot, M. Moldovan, R. Oprean, R. Silaghi-Dumitrescu, O.H. Orasan, S. Saplontai, M.Parvu, G. Emese C. Ionescu, Open Life Sci., 2015, 10, 89-98.

S. Chandar, R. Kotian, P. Madhyastha, S. P. Kabekkodu, Padmalatha Rao, J. Indian Prosthodont. Soc., 2017, 17, 35-40.

Downloads

Published

2020-03-20

How to Cite

JIMAN, P. A., MOLDOVAN, M., SAROSI, C., MUNTEAN, A., POP, A. S., TARMURE, V., … MOHAN, A. G. (2020). SURFACE CHARACTERIZATION AND CYTOTOXICITY ANALYSIS OF THE TITANIUM ALLOYS FOR DENTISTRY. Studia Universitatis Babeș-Bolyai Chemia, 65(1), 149–162. https://doi.org/10.24193/subbchem.2020.1.12

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 10 11 12 13 14 15 16 17 18 19 > >> 

You may also start an advanced similarity search for this article.