HIGH-TEMPERATURE SOLID-STATE SYNTHESIS OF Mg-DOPED ZrO2: STRUCTURAL, OPTICAL AND MORPHOLOGICAL CHARACTERIZATION

Authors

  • Antonela BERAR Department of Prosthetic Dentistry and Dental Materials, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania. Corresponding author: breka@chem.ubbcluj.ro. https://orcid.org/0000-0002-1830-7970
  • Marieta MUREȘAN-POP Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania. Corresponding author: breka@chem.ubbcluj.ro. https://orcid.org/0000-0003-4460-9654
  • Lucian BARBU-TUDORAN Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University; National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania. Corresponding author: breka@chem.ubbcluj.ro. https://orcid.org/0000-0003-0360-016X
  • Réka BARABÁS Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, (Hungarian Line of Study), Babeş-Bolyai University, Cluj-Napoca, Romania. Email: breka@chem.ubbcluj.ro. https://orcid.org/0000-0003-2809-1314
  • Liliana BIZO Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: lbizo@chem.ubbcluj.ro. https://orcid.org/0000-0002-8775-8492

DOI:

https://doi.org/10.24193/subbchem.2020.2.18

Keywords:

Mg-doped ZrO2, solid-state reactions, XRPD, UV-VIS spectroscopy, SEM/EDX

Abstract

15 at% Mg-doped ZrO2 ceramic material was synthesized by solid-state reaction at 1600 ºC. Particle size analysis of raw materials mixture depicts the formation of a narrow particle size distribution (PSD) with a mean particle size of about 56 nm. The structural analysis confirms that the as-synthesized Mg-doped ZrO2 product is of pure tetragonal phase (t-ZrO2) with a crystallite size of 55.76 nm. The UV–VIS diffuse reflectance spectrum (DRS) showed a maximum %R at 550 nm and the estimated optical bandgap was about 3.83 eV. The morphology of the sample examined by scanning electron microscopy (SEM) shows interconnected grains in the sintered ceramics. Moreover, EDX analyses confirm the presence of Mg, Zr, and O, with a homogenous distribution throughout the sample.

References

S. Shukla; S. Seal; Int. Mater. Rev., 2005, 5, 45–64.

D.R. Clarke; C.G. Levi; Annu. Rev. Mater. Res., 2003, 33, 383–417.

J.Y. Thompson; B.R. Stoner; J.R. Piascik; R. Smith; Dental Mater., 2011, 27, 71–82.

V. Fiorentini; G. Gulleri; Phys. Rev. Lett., 2002, 89, 266101, 1–4.

P. Li; I. W. Chen; J.E. Penner-Han; J. Am. Ceram. Soc., 1994, 77, 118–128.

D. Ysoutsou; G. Apostolopoulos; S. Galata; A. Sotiropoulos; G. Mavrou; Y. Panayiotatos; A. Dimoulas; Microelect. Eng., 2009, 86, 1626–1628.

S. Manjunatha; M.S. Dharmaprakash; J. Luminescence, 2016, 180, 20–24.

S. Somiya; N. Yamamato; H. Yanagina; Science and Technology of Zirconia (III), vol. 24 A and 24B, American Ceramic Society, Westerville, 1988.

S. Raveendrana; M.I.K. Khanb; A. Dhayalanb; S. Kannan; Ceram. Int, 2020, 46, 641-652.

P.F. Manicone; P. Rossi Iommetti; L. Raffaelli; J. Dent., 2007, 35, 819–826.

I.G. Tredici; M. Sebastiani; F. Massimi; E. Bemporad; A. Resmini; G. Merlati; U. Anselmi-Tamburini; Ceram. Int., 2016, 42, 8190-8197.

S. Kargozar; S Ramakrishna; M. Mozafari. Curr. Opin. Biomed. Eng., 2019,10, 181-190.

S. Soon; B. Pingguan-Murphy, K.W Lai; S.A. Akbar; Ceram. Int., 2016, 42(11), 12543–12555.

O.S. El-Ghany; A.H Sherief; Future Dent. J., 2016, 2(2), 55–64.

S.A. Ali; S. Karthigeyan; M. Deivanai; R. Mani; Pak. Oral Dent. J., 2014, 34, 177-183.

M. Ferrari; A. Vichi; F. Zarone; Dent. Mater., 2015, 31(3), e63–e76.

S. Kumar, S. Bhunia, A.K. Ojha, Chem. Phys. Lett., 2016, 644, 271–275.

L. Renuka, K.S. Anantharaju, S.C. Sharma, H.P. Nagaswarupa, S.C. Prashantha, H. Nagabhushana, Y.S. Vidya, J. Alloys Compd., 2016, 672, 609-622.

E.C. Subbarao. Zirconia-an overview. In: Advances in ceramics, A.H. Heuer, L.W. Hobbs, Science and Technology of Zirconia, Amsterdam: Elsevier, 1981, vol 3, 1-24.

C. Piconi; G. Maccauro; Biomaterials, 1999, 20, 1-25.

L Keerthana; C. Sakthivel; I. Prabha; 2019, 3-4, Materials Today Sustainability, 100007, 1-15.

R.D. Shannon; C.T. Prewitt; Acta Cryst., 1969, B25, 925-946.

S. Shukla; S. Seal; 2005, Int. Mater. Rev. 50(1), 45-64.

A.L. Patterson; Phys. Rev., 1939, 56, 978-982.

G. Suárez; Y. Sakka; T. S Suzuki; T. Uchikoshi; X. Zhu; E.F. Aglietti; Sci. Technol. Adv. Mater., 2009, 10(2), 025004, 1-8.

P. Kubelka; F. Munk-Aussig; Physik, 1931, 12, 593-601.

L.X. Lovisa; V.D. Araújo; R.L. Tranquilin; E. Longo; M.S. Li; C.A. Paskocimas; M.R.D. Bomio; F.V. Motta; J. Alloys Compds., 2016, 674, 245-251.

M.D. Gonçalves; L.S. Cavalcante; J.C. Sczancoski; J.W.M. Espinosa; P.S. Pizani; E. Longo; I.L.V. Rosa; Opt. Mater., 2009, 31, 1134-1143.

A. Emeline; G.V. Kataeva; A.S. Litke; A.V. Rudakova; V.K. Ryabchuk; N. Serpone, Langmuir, 1998, 14, 5011-5022.

Y. Nian-Qi; L. Zhi-Chao; G. Guang-Rui; W. Bao-Jia; Chinese Physics B, 2017, 26(10), 106801, 1-5.

L. Hu; C. Wang; Y. Huang; J. Mater. Sci, 2010, 45, 3242–3246.

L. Bizo; K. Sabo; R. Barabas; G. Katona; L. Barbu-Tudoran; A. Berar; Studia UBB Chemia, LXV, 1, 2020, 137-148.

G. Pia; C. Siligardi; L. Casnedi; U. Sanna, Ceram. Int., 2016, 42(8), 9583-9590.

B. Annaz; K.A. Hing; M. Kayser; T. Buckland; L. Di Silvio; J. Microsc., 2004, 215, 100-110.

S. Nath; S. Baja; B. Basu; Int. J. Appl. Ceram. Technol., 2008, 5(1), 49-62.

Downloads

Published

2020-06-30

How to Cite

BERAR, A. ., MUREȘAN-POP, M. ., BARBU-TUDORAN, L. ., BARABÁS, R. ., & BIZO, L. . (2020). HIGH-TEMPERATURE SOLID-STATE SYNTHESIS OF Mg-DOPED ZrO2: STRUCTURAL, OPTICAL AND MORPHOLOGICAL CHARACTERIZATION. Studia Universitatis Babeș-Bolyai Chemia, 65(2), 221–232. https://doi.org/10.24193/subbchem.2020.2.18

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.