IMMOBILIZATION OF PHENYLALANINE AMMONIA-LYASE ON HYDROXYAPATITE AND HYDROXYAPATITE COMPOSITES

Authors

  • Judith-Hajnal BARTHA-VARI Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania. https://orcid.org/0000-0001-7147-9651
  • Renáta ELEKES-DARABONT Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania.
  • Laura-Edit BARABÁS Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania.
  • Réka BARABÁS Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania. *Corresponding author: breka@chem.ubbcluj.ro https://orcid.org/0000-0001-6730-084X

DOI:

https://doi.org/10.24193/subbchem.2021.1.13

Keywords:

hydroxyapatite, composites, carbon nanotubes, gelatin, chitosan, phenylalanine ammonia-lyase, immobilization, ammonia elimination.

Abstract

A new and efficient immobilization method of phenylalanine ammonia-lyase was obtained using hydroxyapatite (HAP) and hydroxyapatite - carbon nanotube, gelatin and chitosan - composites (HAP-CNT, HAP-GEL and HAP-CS) as support material. HAP and HAP composites were characterized by transmission electron microscopy (TEM), laser diffraction particle size analyzer and XRD measurements. The obtained nanobioconjugates were tested in the ammonia elimination reactions from L-phenylalanine (L-1). The reusability and the time-course profile of the immobilized enzyme preparation was also tested. While the biocatalyst obtained by using HAP-CS-15 as support material provided the highest conversion rate in the ammonia elimination reaction from L-1 (98,1% compared to 98,5% obtained using the non-immobilized enzyme), the most stable biocatalyst proved to be HAP-PAL, which maintained more than 80% of its initial activity even after 5 cycles of reuse.

References

L.M. Pera; M.D. Baigori; A. Pandey; G.R. Castro, Biocatalysis. Elsevier B.V., 2015.

R.A. Sheldon; S. Van Pelt, Chem. Soc. Rev., 2013, 42, , 6223–6235.

M. Hartmann; X. Kostrov, Chem. Soc. Rev., 2013, 42, 15, 6277–89.

C. Mateo; J.M. Palomo; M. Fuentes; L. Betancor; V. Grazu; F. López-Gallego; B.C.C. Pessela; A. Hidalgo; G. Férnandez-Lorente; R. Férnandez-Lafuente; J. M. Guisan, Enzyme Microb. Technol., 2006, 39, 2, 274–280.

W.C. Liu; H.Y. Wang; L.C. Chen; S.W. Huang; C. Wu; R.J. Chung, Ceram. Int., 2019, 45, 5, 5668–5679.

R. Barabás; E. de Souza Ávila; L.O. Ladeira; L.M. Antônio; R. Tötös; D. Simedru; L. Bizo; O. Cadar, Arab. J. Sci. Eng., 2020, 45, 1, 219–227.

S. Mondal; G. Hoang; P. Manivasagan; H. Kim; J. Oh, Ceram. Int., 2019, 45, 14, 17081–17093.

P. Yang; Z. Quan; C. Li; X. Kang; H. Lian; J. Lin, Biomaterials, 2008, 29, 32, 4341–4347.

S. Mondal; U. Pal; A. Dey, Ceram. Int., 2016, 42, 16, 18338–18346.

J.S. Cho; D.S. Yoo; Y.C. Chung; S. H. Rhee, J. Biomed. Mater. Res. - Part A, 2014, 102, 2, 455–469.

K. Balani; Y. Chen; S.P. Harimkar; N.B. Dahotre; A. Agarwal, Acta Biomater., 2007, 3, 6, 944–951.

M. Li; P. Xiong; F. Yan; S. Li; C. Ren; Z. Yin; A. Li; H. Li; X. Ji; Y. Zheng; Y. Cheng, Bioact. Mater., 2018, 3, 1, 1–18.

R.K. Brundavanam; Z.T. Jiang; P. Chapman; X.T. Le; N. Mondinos; D. Fawcett; G. E. J. Poinern, Ultrason. Sonochem., 2011, 18, 3, 697–703.

J. Venkatesan; S. K. Kim, Mar. Drugs, 2010, 8, 8, 2252–2266.

L. Poppe; J. Rétey, Curr Org Chem, 2003, 7, 13, 1297–1315.

L. Poppe; J. Rétey, Angew. Chemie - Int. Ed., 2005, 44, 24, 3668–3688.

H. Ritter; G.E. Schulz, Plant Cell, 2004, 16, 12, 3426–3436.

A. Gunia-Krzyżak; K. Słoczyńska; J. Popiół; P. Koczurkiewicz; H. Marona; E. Pękala, Int. J. Cosmet. Sci., 2018, 40, 4, 356–366.

D. Weiser; L.C. Bencze; G. Bánõczi; F. Ender; R. Kiss; E. Kõkai; A. Szilágyi; B. G. Vértessy; Ö. Farkas; C. Paizs; L. Poppe, ChemBioChem, 2015, 16, 16, 2283–2288.

D. Weiser; A. Varga; K. Kovács; F. Nagy; A. Szilágyi; B.G. Vértessy; C. Paizs; L. Poppe, ChemCatChem, 2014, 6, 5, 1463–1469.

J.H. Bartha-Vári; M.I. Toşa; F.D. Irimie; D. Weiser; Z. Boros; B.G. Vértessy; C. Paizs; L. Poppe, ChemCatChem, 2015, 7, 7, 1122–1128.

K.H. Jang; K.B. Song; J.S. Kim; C.H. Kim; B.H. Chung; S. K. Rhee, Bioprocess Eng., 2000, 23, 1, 89–93.

C. Marzadori; S. Miletti; C. Gessa; S. Ciurli, Soil Biol. Biochem., 1998, 30, 12, 1485–1490.

B. Wang; J.J. Zhang; Z.Y. Pan; X.Q. Tao; H. S. Wang, Biosens. Bioelectron., 2009, 24, 5, 1141–1145.

A. Fihri; C. Len; R.S. Varma; A. Solhy, Coord. Chem. Rev., 2017, 347, 48–76.

T.A. Dick; L.A. dos Santos, Mater. Sci. Eng. C, 2017, 77, 874–882.

M. Prakasam; J. Locs; K. Salma-Ancane; D. Loca; A. Largeteau; L. Berzina-Cimdina, J. Funct. Biomater., 2015, 6, 4, 1099–1140.

R. Rajesh; N. Senthilkumar; A. Hariharasubramanian; Y. Dominic Ravichandran, Int. J. Pharm. Pharm. Sci., 2012, 4, SUPPL. 5, 23–27.

R. Munirathinam; J. Huskens; W. Verboom, 1–32, 2015.

C. Zhou; Q. Wu, Colloids Surfaces B Biointerfaces, 2011, 84, 1, 155–162.

M.R. Nikpour; S.M. Rabiee; M. Jahanshahi, Compos. Part B Eng., 2012, 43, 4, 1881–1886.

R. Barabás; M. Czikó; I. Dékány; L. Bizo; E. S. Bogya, Chem. Pap., 2013, 67, 11, 1414–1423,.

Z. Xu; G. Qian; M. Feng, Results Phys., 2020, 16, 102991,.

N.A. Dima; A. Filip; L.C. Bencze; M. Olah; P. Satorhelyi; B.G. Vertessy; l.Poppe; C. Paizs, Studia UBB Chemia, 2016, 61, 2, 21-34.

E.S. Bogya; R. Barabás; A. Csavdári; V. Dejeu; I. Bâldea, Chem. Pap., 2009, 63, 5, 568–573.

Downloads

Published

2021-03-30

How to Cite

BARTHA-VARI, J.-H., ELEKES-DARABONT, R., BARABÁS, L.-E., & BARABÁS, R. (2021). IMMOBILIZATION OF PHENYLALANINE AMMONIA-LYASE ON HYDROXYAPATITE AND HYDROXYAPATITE COMPOSITES. Studia Universitatis Babeș-Bolyai Chemia, 66(1), 165–178. https://doi.org/10.24193/subbchem.2021.1.13

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.