RADIOCARBON INVESTIGATION OF THE BIG BAOBAB OF OUTAPI, NAMIBIA

Authors

  • Adrian PATRUT Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, RO-400028, Cluj-Napoca, Romania; Babeş-Bolyai University, Raluca Ripan Institute for Research in Chemistry, 30 Fantanele, RO-400294 Cluj-Napoca, Romania. *Corresponding author: apatrut@gmail.com https://orcid.org/0000-0002-9862-6735
  • Roxana T. PATRUT Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos, RO-400028, Cluj-Napoca, Romania. https://orcid.org/0000-0002-8691-2160
  • Laszlo RAKOSY Babeş-Bolyai University, Faculty of Biology and Geology, 44 Republicii, RO-400015, Cluj-Napoca, Romania. https://orcid.org/0000-0002-7793-6996
  • Demetra RAKOSY AG Spatial Interaction Centre, German Centre for Integrative Biodiversity Research, 5e Deutscher Platz, D-04103 Leipzig, Germany. https://orcid.org/0000-0001-8010-4990
  • Ileana-Andreea RATIU Babeş-Bolyai University, Faculty of Chemstry and Chemical Engineering, 11 Arany Janos, RO-400028, Cluj-Napoca, Romania; Babeş-Bolyai University, Raluca Ripan Institute for Research in Chemistry, 30 Fantanele, RO-400294 Cluj-Napoca, Romania.
  • Karl F. VON REDEN NOSAMS Facility, Dept. of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, U.S.A. https://orcid.org/0000-0001-6413-9018

DOI:

https://doi.org/10.24193/subbchem.2021.1.12

Keywords:

AMS radiocarbon dating, Adansonia digitata, dendrochronology, age determination, false cavity, multiple stems.

Abstract

The article reports the AMS (accelerator mass spectrometry) radiocarbon dating results of the Big baobab of Outapi, which is the largest African baobab of Outapi, Namibia. The investigation of this monumental baobab revealed that it consists of 8 fused stems, out of which 4 are false stems. The Big baobab exhibits a closed ring-shaped structure. Three stems build the ring, which is now incomplete due to previous damage to the false cavity. Three wood samples were collected from the false cavity and from the longest false stem. Seven segments were extracted from the samples and dated by radiocarbon. The oldest investigated sample segment had a radiocarbon date of 820 ± 17 BP, corresponding to a calibrated age of 780 ± 10 calendar years. According to dating results, the Big baobab of Outapi is 850 ± 50 years old.

References

G.E. Wickens, Kew Bull., 1982, 37(2), 172-209.

D.A. Baum, Ann. Mo. Bot. Gard.,1995, 82, 440-471.

G.E. Wickens, P. Lowe, "The Baobabs: Pachycauls of Africa, Madagascar and Australia", Springer, Dordrecht, 2008, pp. 232-234, 256-257, 295-296.

J.D. Pettigrew, L.K. Bell, A. Bhagwandin, E. Grinan, N. Jillani, J. Meyer, E. Wabuyele, C.E. Vickers, Taxon, 2013, 61, 1240-1250.

G.V. Cron, N. Karimi, K.L. Glennon, C.A. Udeh, E.T.F. Witkowski, S.M. Venter, A.E. Assobadjo, D.H. Mayne, D.A. Baum, Taxon, 2016, 65, 1037-1049.

A. Petignat, L. Jasper, “Baobabs of the world: The upside down trees of Madagascar, Africa and Australia”, Struik Nature, Cape Town, 2015, pp. 16-86.

A. Patrut, K.F. von Reden, D.A. Lowy, A.H. Alberts, J.W. Pohlman, R. Wittmann, D. Gerlach, L. Xu, C.S. Mitchell, Tree Phys., 2007, 27, 1569-1574.

A. Patrut, K.F. von Reden, R. Van Pelt, D.H. Mayne, D.A. Lowy, D. Margineanu, Ann. Forest Sci., 2011, 68, 93-103.

A. Patrut, S. Woodborne, R.T. Patrut, L. Rakosy, D.A. Lowy, G. Hall, K.F. von Reden, Nat. Plants, 2018, 4(7), 423-426.

A. Patrut, K.F. von Reden, D.H. Mayne, D.A. Lowy, R.T. Patrut, Nucl. Instrum. Methods Phys. Res. Sect. B, 2013, 294, 622-626.

A. Patrut, S. Woodborne, K.F. von Reden, G. Hall, M. Hofmeyr, D.A. Lowy, R.T. Patrut, PLOS One, 2015, 10(1): e0117193.

A. Patrut, S. Woodborne, K.F. von Reden, G. Hall, R.T. Patrut, L. Rakosy, J-M. Leong Pock Tsy, D.A. Lowy, D. Margineanu, Radiocarbon, 2017, 59(2), 435-448.

A. Patrut, R.T. Patrut, L. Rakosy, D.A. Lowy, D. Margineanu, K.F. von Reden, Studia UBB Chemia, 2019, LXIV, 2 (II), 411-419.

A. Patrut, S. Woodborne, R.T. Patrut, G. Hall, L. Rakosy, C. Winterbach, K.F. von Reden, Forests, 2019, 10, 983-993. doi:10.3390/f10110983.

A. Patrut, A. Garg, S. Woodborne, R.T. Patrut, L. Rakosy, I.A. Ratiu, PLOS One, 2020, 15(1): e0227352.

K. Lisao, C.J. Geldenhuys, P.W. Chirwa, Glob. Ecol. Conserv., 2018, 14: e00386.

F. Munyebvu, I. Mapaure, E.G. Kwembeya, S. Afr. J. Bot., 2018, 119, 112-118.

R.T. Patrut, A. Patrut, D. Rakosy, L. Rakosy, D.A. Lowy, J. Bodis, K.F. von Reden, Studia UBB Chemia, 2020, LXV, 2, 149-159.

A. Patrut, S. Garnaud, O. Ka, R.T. Patrut, T. Diagne, D.A. Lowy, E. Forizs, J. Bodis, K.F. von Reden, Studia UBB Chemia, 2017, LXII, 1, 111-120.

A. Patrut, K.F. von Reden, P. Danthu, J-M. Leong Pock Tsy, R.T. Patrut, D.A. Lowy, PLOS One, 2015, 10(3): e0121170.

A. Patrut, K.F. von Reden, P. Danthu, J-M. Leong Pock-Tsy, L. Rakosy, R.T. Patrut, D.A. Lowy, D. Margineanu, Nucl. Instrum. Methods Phys. Res. Sect. B, 2015, 361, 591-598.

A. Patrut, R.T. Patrut, P. Danthu, J.-M. Leong Pock-Tsy, L. Rakosy , D.A. Lowy, K.F. von Reden, PLoS ONE, 2016, 11(1), e0146977.

N.J. Loader, I. Robertson, A.C. Barker, V.R. Switsur, J.S. Waterhouse, Chem. Geol., 1997, 136(3), 313–317.

Z. Sofer, Anal. Chem., 1980, 52(8), 1389-1391.

J.S. Vogel, J.R. Southon, D.E. Nelson, T.A. Brown, Nucl. Instrum. Methods Phys. Res. Sect. B, 1984, 5, 289-293.

C. Bronk Ramsey, Radiocarbon, 2009, 51, 337-360.

A.G. Hogg, T.J. Heaton, Q. Hua, J.G. Palmer, C.S.M. Turney, J. Southon, A. Bayliss, P.G. Blackwell, G. Boswijk, C.B. Ramsey, C. Pearson, F. Petchey, P.J. Reimer, R.W. Reimer, L. Wacher, Radiocarbon, 2020, 62(4), 759-778.

Downloads

Published

2021-03-30

How to Cite

PATRUT, A., PATRUT, R. T., RAKOSY, L., RAKOSY, D., RATIU, I.-A., & VON REDEN, K. F. (2021). RADIOCARBON INVESTIGATION OF THE BIG BAOBAB OF OUTAPI, NAMIBIA. Studia Universitatis Babeș-Bolyai Chemia, 66(1), 153–163. https://doi.org/10.24193/subbchem.2021.1.12

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 > >> 

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.