MODELING AND SIMULATION OF PRESSURE, TEMPERATURE AND CONCENTRATION FOR THERMAL EXPLOSIONS

Authors

  • Olimpia BUNTA Iuliu Hatieganu University of Medicine and Pharmacy, Orthodontics Department, 31 Avram Iancu st., 400117, Cluj-Napoca, Romania
  • Mihaela-Ligia UNGUREŞAN Technical University of Cluj-Napoca, Physical and Chemistry Department, 103-105 Muncii st., 400641, Cluj-Napoca, Romania. * Corresponding author: mihaela.unguresan@chem.utcluj.ro https://orcid.org/0000-0001-9193-6741
  • Vlad MUREŞAN Technical University of Cluj-Napoca, Department of Automation, 15 C-tin Daicoviciu st., 400020, Cluj-Napoca, Romania
  • Ovidiu STAN Technical University of Cluj-Napoca, Department of Automation, 15 C-tin Daicoviciu st., 400020, Cluj-Napoca, Romania https://orcid.org/0000-0002-2006-9633

DOI:

https://doi.org/10.24193/subbchem.2021.1.07

Keywords:

thermal explosion, analogical modeling, numerical simulation, state Parameters.

Abstract

In this paper is presented a simple possible model which can explain the thermal explosion problem, the existence of an induction period and a sudden rapid temperature rise. As state variables used for modeling are: the pressure, the temperature and the concentration. The time evolutions of these state parameters are analogically modeled using ordinary differential equations. The numerical simulations of the obtained model are made in Matlab/SimulinkTM. The validation of the model is realized by comparison between experimental data and simulation results, presenting a good accuracy.

References

V. Novozhilov; Sci Rep, 2016, 6, 29730.

A.N. Campbell; Phys Chem Chem Phys, 2015, 17(26), 16894-906.

V. Novozhilov; Sci Rep, 2018, 8(1), 4030.

A.K. Oppenheim; Chemical Kinetic Aspects, Dynamics of Combustion Systems, 2 nd ed.; Springer Berlin Heidelberg Publisher, 2008, 81-113.

E. Glascoe; H. Keo Springer; J.W. Tringe; L. Maienschein; Bull Am Phys Soc, 2011, 56 (6), 347-351.

C.Y. Chan; P.C. Kong; Appl Math Comput, 1995, 71(2-3), 201-210.

G.N. Gorelov; V.A Sobolev; Combust Flame, 1991, 87 (2), 203-210.

K. Takashi; Critical Temperatures for the Thermal Explosion of Chemicals, Hardbound, 2005, 406.

N.N. Semenov; AN SSSR, 1959.

D.A. Frank-Kamenetsky; Diffusion and Heat Transfer in Chemical Kinetics, Moscow, Nauka, 1967.

O.M. Todes; P.V. Melent’ev; J Phys Chem,1939, 13 (7), 52–58.

A.G. Merzhanov; F.I. Dubovitsky; UChN, 1966, 35(4), 656–683.

B.F. Gray; Combust Flame, 1973, 21, 317–325.

R. Almeida; N.R.O. Bastos; M.T.T. Monteiro; Math. Methods Appl. Sci., 2016, 39(16), 4846-4855.

B.E. Zhestkov; S.N. Kozlov; E.N. Alexandrov; High Temp, 2019, 57(3), 329-334.

X. Hu; Q. Xie; J. Zhang; Q. Yu; H. Liu; Yasong Sun; Int. J. Hydrog. Energy, 2020, 45(51), 7837-27845.

K. Allali; Y. Joundy; A. Taik; Mathematical Modelling of Natural Phenomena, 2019, 14, 602-614.

E.N. Aleksandrov, N.M. Kuznetsov, S.N. Kozlov; Combust. Explos. Shock Waves, 2010, 46, 533–540.

T. Coloşi; M. Abrudean; M.-L. Ungureşan; V. Mureşan; Numerical Simulation Method for Distributed Parameters Processes using the Matrix with Partial Derivatives of the State Vector, Ed. Springer, 2013, pg. 343.

Downloads

Published

2021-03-30

How to Cite

BUNTA, O., UNGUREŞAN, M.-L., MUREŞAN, V., & STAN, O. (2021). MODELING AND SIMULATION OF PRESSURE, TEMPERATURE AND CONCENTRATION FOR THERMAL EXPLOSIONS. Studia Universitatis Babeș-Bolyai Chemia, 66(1), 89–104. https://doi.org/10.24193/subbchem.2021.1.07

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 17 18 19 20 21 22 23 24 25 26 > >> 

You may also start an advanced similarity search for this article.