DEEP EUTECTIC SOLVENTS FOR CO₂ CAPTURE IN POST-COMBUSTION PROCESSES

Authors

  • Eliza Gabriela MIHĂILĂ University Politehnica Bucharest, Power Engineering Faculty, Department of Energy Generation and Use, Romania; National Institute for Research and Development in Chemistry and Petrochemistry ICECHIM, Romania.
  • Diana CONSTANTINESCU ARUXANDEI National Institute for Research and Development in Chemistry and Petrochemistry ICECHIM, Romania. https://orcid.org/0000-0002-4625-6525
  • Sanda Maria DONCEA ational Institute for Research and Development in Chemistry and Petrochemistry ICECHIM, Romania. https://orcid.org/0000-0002-4625-6525
  • Florin OANCEA National Institute for Research and Development in Chemistry and Petrochemistry ICECHIM, Romania. https://orcid.org/0000-0002-4625-6525
  • Cristian DINCĂ University Politehnica Bucharest, Power Engineering Faculty, Department of Energy Generation and Use, Romania. *Coresponding author: crisflor75@yahoo.com https://orcid.org/0000-0002-4625-6525

DOI:

https://doi.org/10.24193/subbchem.2021.2.20

Keywords:

CO₂ capture, deep eutectic solvents, green solvents.

Abstract

CO₂ emissions represent an actual problem for the environment. Additionally, the new demands for all chemical and physical processes request to be more eco-friendly. In this work, deep eutectic solvents (DESs), a relatively new class of solvents, were used for CO₂ capture and desorption. DESs are more environmentally friendly than classical solvents. Two choline chloride-based DES – ethaline (ChCl:EG, 1:2 molar ratio) and reline (ChCl:U, 1:2 molar ratio) were prepared and characterized before studying their CO2 absorption – desorption capacity. The formation of eutectics was confirmed by FT-IR analysis and DESs were characterized in terms of pH, density, viscosity, refractive index, and electrical conductivity. The tests showed that ethaline had better CO₂ absorption and desorption capacity than reline, which could be explained by several parameters.

References

Government of France, “Integrated National Energy and Climate Plan for France,” 2020

N. US Department of Commerce, Global Monitoring Laboratory. "Global Monitoring Laboratory - Carbon Cycle Greenhouse Gases https://www.esrl.noaa.gov/gmd/ccgg/trends/history.html

EA, World gross electricity production, by source, 2018, IEA, Paris, https://www.iea.org/data-and-statistics/charts/world-gross-electricity-production-by-source-2018

J. Bae, Y. Chung, J. Lee, and H. Seo, J. Clean. Prod., 2020, 246, 119003

C. Hepburn, E.Adlen, J. Beddington, E.A. Carter, S. Fuss, N.M. Dowell, J.C. Minx, P. Smith, C.K. Williams, Nature, 2019, 575, 7781, 87–97

Y. Wang, L. Zhao, A. Otto, M. Robinius, D. Stolten, En. Proc. 2016, 114, 650-665

A. Paiva, R. Craveiro, I. Aroso, M. Martins, R.L. Reis, and A.R.C. Duarte, ACS Sustain. Chem. Eng., 2, 5, 1063–1071

Y. Zhang, X. Ji, and X. Lu, Renew. Sustain. Energy Rev., 2018, 97, 436–455

R.B. Leron, A. Caparanga, M.-H. Li, J. Taiwan Inst. Chem. Eng., 2013, 44, 6, 879-885

B. Leron, M.-H. Li, Thermochim. Acta, 2013, 551, 14-19

X. Li, M. Hou, B. Han, X. Wang, L. Zou, J. Chem. Eng. Data, 2008, 53, 548–550

A. Malik, H.S. Dhattarwal, H.K. Kashyap, The J. of Phys. Chem. B, 2021, 125, 7, 1852-1860

N.R. Mirza, N.J. Nicholas, Y. Wu, K.A. Mumford, S.E. Kentish, G.W. Stevens, J. of Chem. & Eng. Data, 2015, 60, 11, 3246-3252

E. Ali, M.K. Hadj-Kali, S. Mulyono, and I. Alnashef,” Int. J. Greenh. Gas Control, 2016, 47, 342–350

M. Hayyan, T. Aissaoui, M.A. Hashim, M.A.H. AlSaadi, A. Hayyan, J. Taiwan Inst. Chem. Eng., 2015, 50, 24–30

T. Aissaoui, Pharm. Anal. Acta, 2015, 6, 11, 11–14

W. Li, Z. Zhang, B. Han, S. Hu, J. Song, Y. Xiea, X. Zhou, Green Chem., 2008, 10, 1142–1145

Q. Zhang, K. De Oliveira Vigier, S. Royer, and F. Jérôme, Chem. Soc. Rev., 2012, 41, 7108–7146

A.P. Abbott, R.C. Harris, K.S. Ryder, J. Phys. Chem. B, 2007, 111, 18, 4910–4913

K. Shahbaz, S. Baroutian, F.S. Mjalli, M.A. Hashim, and I.M. Alnashef, Thermochim. Acta, 2012, 527, 59–66

A.P. Abbott, G. Capper, S. Gray, ChemPhysChem, 2006, 7, 4, 803–806

M. Taherzadeh, R. Haghbakhsh, A.R.C. Duarte, and S. Raeissi, J. Chem. Eng. Data, 2020, 65, 8, 3965–3976

C.R. Ashworth, R.P. Matthews, T. Welton, and P.A. Hunt, Phys. Chem. Chem. Phys., 2016, 18, 27, 18145–18160

R.B. Leron, A.N. Soriano, and M.H. Li, “J. Taiwan Inst. Chem. Eng., 2012, 43, 4, 551–557

P.K. Chhotaray, S.K. Biswal, and S. Pandey, J. of Molec. Liq., 2020, 312, 113477

S. Sarmad, Y. Xie, J.P. Mikkola, and X. Ji, New J. Chem., 2016, 41, 1, 290–301

J. Naser, F. Mjalli, B. Jibril, S. Al-Hatmi, and Z. Gano, Int. J. Chem. Eng. Appl., 2013, 4, 114–118

Downloads

Published

2021-06-30

How to Cite

MIHĂILĂ, E. G., CONSTANTINESCU ARUXANDEI, D., DONCEA, S. M., OANCEA, F., & DINCĂ, C. (2021). DEEP EUTECTIC SOLVENTS FOR CO₂ CAPTURE IN POST-COMBUSTION PROCESSES. Studia Universitatis Babeș-Bolyai Chemia, 66(2), 233–246. https://doi.org/10.24193/subbchem.2021.2.20

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.