THE FULL MAPPING OF LOW-LYING EXCITED STATE RELAXATION DYNAMIC PATHWAYS FOR ACETOPHENONE

Authors

  • Attila BENDE Molecular and Biomolecular Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Str. Donat 67-103, C.P. 700, Cluj-Napoca, RO-400293, Romania, attila.bende@itim-cj.ro https://orcid.org/0000-0002-5347-1514

DOI:

https://doi.org/10.24193/subbchem.2021.3.15

Keywords:

acetophenone, conical intersection, intersystem crossing, spin-orbit coupling, deactivation pathway.

Abstract

Several relaxation pathways of the low-lying electronic excited state dynamics for acetophenone including also the singlet-triplet intersystem crossings were studied. The multireference Hartree-Fock and second order perturbation theory methods together with def2-tzvp basis set were used to characterize the equilibrium geometries and the crossing points between different potential energy surfaces (PES) up to the third excited state level considering both the singlet and triplet spin states. The electronic deactivation pathways studies reveal that the acetophenone shows several possible deactivation channels but their occurring probability strongly depends on the local profile of the PES of the intermediate states.

References

W. H. Fang; D. L. Phillips; ChemPhysChem, 2002, 3(10), 889-892.

J. Li; F. Zhang; W. H. Fang; J. Phys. Chem. A, 2005, 109(34), 7718-7724.

Q. Fang; Y. J. Liu; J. Phys. Chem. A, 2010, 114(1), 680-684.

M. Berger; C. Steel; J. Am. Chem. Soc., 1975, 97(17), 4817-4821.

R. D. Vanselow; A. B. F. Duncan; J. Am. Chem. Soc., 1953, 75(4), 829-832.

M. Koyanagi; R. J. Zwarich; L. J. Goodman; Chem. Phys., 1972, 56(6), 3044-3060.

Y.-W. Wang; H.-Y. He; W.-H. Fang; J. Mol. Struct. (THEOCHEM), 2003, 634(1-3), 281-287.

A. Bende; AIP Conf. Proc., 2013, 1565, 24-28.

M. Huix-Rotllant; D. Siri; N. Ferré; Phys. Chem. Chem. Phys., 2013, 15(44), 19293-19300.

M. Bear; Beyond Born--Oppenheimer: Electronic Nonadiabatic Coupling Terms and Conical Intersections, Wiley-Interscience, 2006.

H.-Y. Xiao; Y.-J. Liu; W.-H. Fang; J. Mol. Struct. (THEOCHEM), 2007, 802(1-3), 99-103.

G. Cui; Y. Lu; W. Thiel; Chem. Phys. Lett., 2012, 537, 21-26.

W.-H. Fang; Acc. Chem. Res., 2008, 41(3), 452-457.

M. Huix-Rotllant; N. Ferré; J. Chem. Phys., 2014, 140(13), 134305.

I. J. Palmer; I. N. Ragazos; F. Bernardi; M. Olivucci; M. A. Robb; J. Am. Chem. Soc., 1993, 115, 673-682.

Q. Li, D. Mendive-Tapia; M. J. Paterson; A. Migani; M. J. Bearpark; M. A. Robb; L. Blancafort; Chem. Phys., 2010, 377(1-3), 60-65.

MOLPRO version 2012.1 is a package of ab initio programs written by H.-J. Werner; P. J. Knowles; G. Knizia; F. R. Manby; M. Schütz; P. Celani; T. Korona; R. Lindh; A. Mitrushenkov; G. Rauhut; K. R. Shamasundar; T. B. Adler; R. D. Amos; A. Bernhardsson; A. Berning; D. L. Cooper; M. J. O. Deegan; A. J. Dobbyn; F. Eckert; E. Goll; C. Hampel; A. Hesselmann; G. Hetzer; T. Hrenar; G. Jansen; C. Köppl; Y. Liu; A. W. Lloyd; R. A. Mata; A. J. May; S. J.; McNicholas; W. Meyer; M. E. Mura; A. Nicklaβ; D. P. O'Neill; P. Palmieri; D. Peng; K. Pflüger; R. Pitzer; M. Reiher; T. Shiozaki; H. Stoll; A. J. Stone; R. Tarroni; T. Thorsteinsson; M. Wang; see http://www.molpro.net.

F. Weigend; R. Ahlrichs; Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.

T. Shiozaki; W. Györffy; P. Celani; H.-J. Werner; J. Chem. Phys., 2014, 135(8), 081106.

J. Lorentzon; M. P. Fulscher; B. O. Roos; J. Am. Chem. Soc., 1995, 117(36), 9265-9273.

A. Berning; M. Schweizer; H.-J. Werner; P. J. Knowles; P. Palmieri; Mol. Phys., 2000, 98(21), 1823-1833.

A. O. Mitrushenkov; P. Palmieri; R. Tarroni; Mol. Phys., 2003, 101(13), 2043-2046.

J. P. Foster; F. Weinhold; J. Am. Chem. Soc., 1980, 102(24), 7211-7218.

A. E. Reed; R. B. Weinstock; F. Weinhold; J. Chem. Phys., 1985, 83(2), 735-743.

A. R. Allouche; J. Comput. Chem., 2011, 32, 174-182.

GaussView, Version 5.0.9, R. Dennington, T. Keith, J. Millam, Semichem Inc., Shawnee Mission, KS, 2009.

Downloads

Published

2021-09-30

How to Cite

BENDE, A. (2021). THE FULL MAPPING OF LOW-LYING EXCITED STATE RELAXATION DYNAMIC PATHWAYS FOR ACETOPHENONE. Studia Universitatis Babeș-Bolyai Chemia, 66(3), 239–253. https://doi.org/10.24193/subbchem.2021.3.15

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.