SINGLE-MOLECULE DETECTION AND MANIPULATION WITH BIOLOGICAL NANOPORES
DOI:
https://doi.org/10.24193/subbchem.2021.3.09Keywords:
single-molecule, peptides, electrophysiology, detection, sensing, nanopore, DNA, PNA.Abstract
Single-molecule electrophysiology techniques using protein-based or solid-state nanopores as nanoreactors were proven incredibly useful as platforms for sensing and biophysical characterisation of biological molecules (e.g., peptides, proteins), DNA detection and sequencing in a label-free, low-cost, rapid and high signal-to-noise ratio manner. Herein we present a number of discoveries in this field, developed over the years in our laboratory, including: (i) the pH-mediated, fine-tuning of peptides passage through the α-hemolysin nanopore; (ii) increase of the capture rate and dwell times of polypeptides inside the nanopore, through engineering dipole-like polypeptides; (iii) the implication of a nanopore-AuNP (citrate anion-coated gold nanoparticles) platform to selectively detect nanomolar concentrations of target ssDNA.References
J. J. Kasianowicz; J. W. F. Robertson; E. R. Chan; J. E. Reiner; V. M. Stanford, Annu. Rev. Anal. Chem. 2008, 1, 737−766
S. W. Kowalczyk; T. R. Blosser; C. Dekker; Trends Biotechnol., 2011, 29, 607–614
Z.-L. Hu; M.-Z. Huo; Y.-L. Ying; Y.-T. Long; Angew. Chem. Int. Ed., 2021, 10.1002/anie.202013462
A. Asandei; S. Iftemi; L. Mereuta; I. Schiopu; T. Luchian; J. Membr. Biol., 2014 247(6), 523-530
J. J. Kasianowicz; E. Brandin; D. Branton; D. W. Deamer; Proc. Natl. Acad. Sci. USA, 1996, 93, 13770–13773
T. Luchian; Y. Park; A. Asandei; I. Schiopu; L. Mereuta; A. Apetrei; Acc. Chem. Res., 2019, 52 (1), 267–276
A. Asandei; I. Schiopu; S. Iftemi; L. Mereuta; T. Luchian; Langmuir, 2013, 29, 15634–15642
A. Fennouri; R. Daniel; M. Pastoriza-Gallego; L. Auvray; J. Pelta; L. Bacri; Anal. Chem., 2013, 85, 8488–8492
C. Cao; J. Yu; Y.-Q. Wang; Y.-L. Ying; Y.-T. Long; Anal. Chem., 2016, 88, 5046–5049
C. Cao; M.-Y. Li; N. Cirauqui; Y.-Q. Wang; M. Dal Peraro; H. Tian; Y.-T. Long; Nat. Commun., 2018, 9, 2823
T. Z. Butler; M. Pavlenok; I. M. Derrington; M. Niederweis; J. H. Gundlach; Proc. Natl. Acad. Sci. USA, 2008, 105, 20647–20652
S. Conlan; Y. Zhang; S. Cheley; H. Bayley; Biochemistry, 2000, 39, 11845–11854
M. Chen; S. Khalid; M. S. P. Sansom; H. Bayley; PNAS, 2008, 105, 6272–6277
G. Huang; K. Willems; M. Soskine; C. Wloka; G. Maglia; Nat. Commun., 2017, 8, 1
M. Soskine; A. Biesemans; B. Moeyaert; S. Cheley; H. Bayley; G. Maglia; Nano. Lett., 2012, 12, 4895–4900
F. Haque; J. Lunn; H. Fang; D. Smithrud; P. Guo; ACS Nano, 2012, 6, 3251–3261
E. M. Nestorovich; T. K. Rostovtseva; S. M. Bezrukov; Biophys. J., 2003, 85, 3718–3729
E. M. Nestorovich; C. Danelon; M. Winterhalter; S. M. Bezrukov; Proc. Natl. Acad. Sci. USA, 2002, 99, 9789–9794
A. Apetrei; A. Asandei; Y. Park; K.-S. Hahm; M. Winterhalter; T. Luchian; J. Bioenerg. Biomembr., 2010, 42, 173–180
J. Wang; J. A. Bafn; S. P. Bhamidimarri; M. Winterhalter; Angew. Chem. Int. Ed., 2019, 58, 4737–4741
K. Yamashita; Y. Kawai; Y. Tanaka; N. Hirano; J. Kaneko; N. Tomita; M. Ohta; Y. Kamio; M. Yao; I. Tanaka; Proc. Natl. Acad. Sci. USA, 2011, 108, 17314–17319
L. Song; M. R. Hobaugh; C. Shustak; S. Cheley; H. Bayley; J. E. Gouaux; Science, 1996, 274, 1859–1865
L.-Q. Gu; J. W. Shim; Analyst, 2010, 135, 441–451
R. T. Perera; A. M. Fleming; A. M. Peterson; J. M. Heemstra; C. J. Burrows; H. S. White; Biophys. J., 2016, 110, 306–314
Y. Wang; D. Zheng; Q. Tan; M. X. Wang; L.-Q. Gu; Nat. Nanotechnol., 2011, 6, 668–674
A. Ciuca; A. Asandei; I. Schiopu; A. Apetrei; L. Mereuta; C. H. Seo; Y. Park; T. Luchian; Anal. Chem., 2018, 90, 7682–7690
L. Mereuta; A. Asandei; I. Schiopu; Y. Park; T. Luchian; Anal. Chem., 2019, 91, 8630–8637
W. Vercoutere; S. Winters-Hilt; H. Olsen; D. Deamer; D. Haussler; M. Akeson; Nat. Biotechnol., 2001, 19, 3
Y. Ding; A. M. Fleming; H. S. White; C. J. Burrows; J. Phys. Chem. B, 2014, 118, 12873–12882
M. Montal; P. Mueller; Proc. Natl. Acad. Sci. USA, 1972, 69, 3561–3566
L. Mereuta; M. Roy; A. Asandei; J. K. Lee; Y. Park; I. Andricioaei; T. Luchian; Sci. Rep., 2014, 4, 3885
M. Tsutsui; Y. Maeda; Y. He; S. Hongo; S. Ryuzaki; S. Kawano; T. Kawai; M. Taniguchi; Appl. Phys. Lett., 2013, 103, 013108
Y. He; M. Tsutsui; C. Fan; M. Taniguchi; T. Kawai; ACS Nano, 2011, 5, 5509–5518
A. Asandei; A. Ciuca; A. Apetrei; I. Schiopu; L. Mereuta; C. H. Seo; Y. Park; T. Luchian; Sci. Rep., 2017, 7, 6167
A. Asandei; I. Schiopu; C. Ciobanasu; Y. Park; T. Luchian; J. Membr. Biol., 2018, 251, 405–417
A. Asandei; I. Schiopu; M. Chinappi; C. H. Seo; Y. Park; T. Luchian; ACS Appl. Mater. Interfaces, 2016, 8, 13166–13179
A. Asandei; M. Chinappi; J. -K. Lee; C. H. Seo; L. Mereuta; Y. Park; T. Luchian; Sci. Rep., 2015, 5, 10419
I. S. Dragomir; A. Asandei; I. Schiopu; I. C. Bucataru; L. Mereuta; T. Luchian; Polymers (Basel), 2021, 13, 1210
A. Asandei; G. Di Muccio; I. Schiopu; L. Mereuta; I. S. Dragomir; M. Chinappi; T. Luchian; Small Methods, 2020, 4, 1900595
A. Asandei; I. S. Dragomir; G. Di Muccio ; M. Chinappi; Y. Park; T. Luchian; Polymers (Basel), 2018, 10, 885
M. Wanunu; W. Morrison; Y. Rabin; A. Y. Grosberg; A. Meller; Nat. Nanotechnol., 2010, 5, 160–165
L. Mereuta; A. Asandei; I. S. Dragomir; I. C. Bucataru; J. Park; C. H. Seo; Y. Park; T. Luchian; Sci. Rep., 2020, 10, 11323
Z. Guan; J. Liu; W. Bai; Z. Lv; X. Jiang; S. Yang; A. Chen; G. Lv; PLOS ONE, 2014, 9, e108401
L. Mereuta; A. Asandei; C. H. Seo; Y. Park; T. Luchian; ACS Appl. Mater. Interfaces, 2014, 6, 13242–13256
L. Mereuta; T. Luchian; Y. Park; K.-S. Hahm; Biochem. Biophys. Res. Commun., 2008, 373, 467-472
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.