DETERGENT AIDED REFOLDING AND PURIFICATION OF RECOMBINANT XIAP FROM INCLUSION BODIES

Authors

  • Katalin NAGY University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Str. Gh. Polizu, Nr. 1-7, Sector 1, 011061 Bucuresti, Romania.
  • Zita KOVÁCS University of Pécs, Faculty of Sciences, Ifjúság útja 6., 7624 Pécs, Hungary.
  • Ildikó MIKLÓSSY Sapientia Hungarian University of Transylvania, Faculty of Economics, Socio-Human Sciences and Engineering, Department of Bioengineering, 1 Libertatii Square, RO-530104, Miercurea Ciuc, Romania. *Corresponding author: miklossyildiko@uni.sapientia.ro https://orcid.org/0000-0002-8037-7216
  • Pál SALAMON University of Pécs, Faculty of Sciences, Ifjúság útja 6., 7624 Pécs, Hungary.
  • Csongor-Kálmán ORBÁN Sapientia Hungarian University of Transylvania, Faculty of Economics, Socio-Human Sciences and Engineering, Department of Bioengineering, 1 Libertatii Square, RO-530104, Miercurea Ciuc, Romania. https://orcid.org/0000-0002-7509-748X
  • Beáta ALBERT University of Pécs, Faculty of Sciences, Ifjúság útja 6., 7624 Pécs, Hungary; Sapientia Hungarian University of Transylvania, Faculty of Economics, Socio-Human Sciences and Engineering, Department of Bioengineering, 1 Libertatii Square, RO-530104, Miercurea Ciuc, Romania.
  • Szabolcs LÁNYI University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Str. Gh. Polizu, Nr. 1-7, Sector 1, 011061 Bucuresti, Romania; Sapientia Hungarian University of Transylvania, Faculty of Economics, Socio-Human Sciences and Engineering, Department of Bioengineering, 1 Libertatii Square, RO-530104, Miercurea Ciuc, Romania. https://orcid.org/0000-0003-1592-695X

DOI:

https://doi.org/10.24193/subbchem.2021.4.26

Keywords:

XIAP, inclusion body, solubilization, refolding, detergents, affinity chromatography.

Abstract

Human proteins expressed in prokaryotic systems tend to form inclusion bodies. Proteins in inclusion bodies are inactive and the refolding of these densely packed protein molecules is affected by several factors depending on the applied refolding technique. To obtain the active form of protein the most common technique is denaturation of the protein aggregates followed by refolding of inclusion proteins. Conventional denaturants for solubilization are urea, guanidine hydrochloride and sodium dodecyl sulphate (SDS), while refolding can be achieved by several techniques found in the literature. In our study, the recombinant GST-tagged XIAP (X-linked Inhibitor of Apoptosis protein) construct was expressed as inclusion bodies. The protein was solubilized with high efficiency using N-Lauroylsarcosine (ionic detergent). A chromatography-based method using different ratios of detergents was investigated for the refolding process. Batch mode affinity purification was successfully executed using Glutathione Sepharose 4B resin and TritonX-100, n-octyl β-D-thio-glucopyranoside (OTG) and 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate hydrate (CHAPS) detergents in the appropriate ratio. Finally, the refolded protein was purified by size-exclusion chromatography and investigated by western blot analysis.

References

C.M. Croce; J.C. Reed; Cancer Res., 2016, 76, 5914–5920

M.J. Roy; A. Vom; P.E. Czabotar; G. Lessene; Br. J. Pharmacol., 2014, 171, 1973–1987

R. Singh; A. Letai; K. Sarosiek; Nat. Rev. Mol. Cell Biol., 2019, 20, 175–193

P.J. Burke; Trends in Cancer., 2017, 3, 857–870

F. Cairrao; P.M. Domingos; Encycl. Life Sci. (ELS), John Wiley Sons, Ltd Chichester., 2010, pp. 1-8

Y. Estornes; M.J.M. Bertrand; Semin. Cell Dev. Biol., 2015, 39, 106–114

R. Saraei; M. Soleimani; A.A. Movassaghpour Akbari; M. Farshdousti Hagh; A. Hassanzadeh; S. Solali; Biomed. Pharmacother., 2018, 107, 1010–1019

P. Hundsdoerfer; I. Dietrich; K. Schmelz; C. Eckert; G. Henze; Pediatr Blood Cancer., 2009, 55, 260–266

H. Sun; L. Liu; J. Lu; S. Qiu; C.Y. Yang; H. Yi; S. Wang; Bioorganic Med. Chem. Lett., 2010, 20, 3043–3046

R. Feltham; B. Bettjeman; R. Budhidarmo; P.D. Mace; S. Shirley; S.M. Condon; S.K. Chunduru; M.A. McKinlay; D.L. Vaux; J. Silke; C.L. Day; J. Biol. Chem., 2011, 286, 17015–17028

G. Garg; S. Vangveravong; C. Zeng; L. Collins; M. Hornick; Y. Hashim; D. Piwnica-Worms; M.A. Powell; D.G. Mutch; R.H. Mach; W.G. Hawkins; D. Spitzer; Mol. Cancer., 2014, 13, 1–13

L. Bai; D.C. Smith; S. Wang; Pharmacol. Ther., 2014, 144, 82–95

A. Tchoghandjian; A. Soubéran; E. Tabouret; C. Colin; E. Denicolaï; C. Jiguet-Jiglaire; A. El-Battari; C. Villard; N. Baeza-Kallee; D. Figarella-Branger; Cell Death Dis., 2016, 7, 1–10

S. Fulda; Clinical Cancer Research, 2015, 21, 5030–5037

L. Manzoni; D. Gornati; M. Manzotti; S. Cairati; A. Bossi; D. Arosio; D. Lecis; P. Seneci; Bioorganic Med. Chem. Lett., 2016, 26, 4613–4619

A.C. West; B.P. Martin; D.A. Andrews; S.J. Hogg; A. Banerjee; G. Grigoriadis; R.W. Johnstone; J. Shortt; Oncogenesis., 2016, 5, e216-6

K. Welsh; S. Milutinovic; R.J. Ardecky; M. Gonzalez-Lopez; S.R. Ganji; P. Teriete; D. Finlay; S. Riedl; S.I. Matsuzawa; C. Pinilla; R. Houghten; K. Vuori; J.C. Reed; N.D.P. Cosford; PLoS One., 2016, 11, 1–19

D.M. Francis; R. Page; Curr. Protoc. Protein Sci., 2010, 61, 5.24.1-5.24.29

H. Yamaguchi; M. Miyazaki; Biomolecules., 2014, 4, 235–251

E. Kovács; L. Szilágyi; G. Koncz; Appl. Biochem. Biotechnol., 2013, 170, 819–830

C.J. Jeffery; Curr. Protoc. Protein Sci., 2016, 83, 29.15.1-29.15.15

A. Mohammadian; H. Kaghazian; A. Kavianpour; R. Jalalirad; Chem. Technol. Biotechnol., 2018, 93, 1579–1587

A. Basu; X. Li; S.S.J. Leong; Appl. Microbiol. Biotechnol., 2011, 92, 241–251

G. Gieseler; I. Pepelanova; L. Stuckenberg; L. Villain; V. Nölle; U. Odenthal; S. Beutel; U. Rinas; T. Scheper; Appl. Microbiol. Biotechnol., 2017, 101, 123–130

A.A. Padhiar; W. Chanda; T.P. Joseph; X. Guo; M. Liu; L. Sha; S. Batool; Y. Gao; W. Zhang; M. Huang; M. Zhong; Appl. Microbiol. Biotechnol., 2018, 102, 2363–2377

J. Zhang; X. Lv; R. Xu; X. Tao; Y. Dong; A. Sun; D. Wei; Appl. Microbiol. Biotechnol., 2015, 99, 6705–6713

K. Babaei Sheli; M. Ghorbani; A. Hekmat; B. Soltanian; A. Mohammadian; R. Jalalirad; Biotechnol. Reports., 2018, 19, e00259

A. Ghoshal; S.S. Ghosh; Appl. Biochem. Biotechnol., 2014, 175, 2087–2103

F. Naz; M. Asad; P. Malhotra; A. Islam; F. Ahmad; M.I. Hassan; Appl. Biochem. Biotechnol., 2014, 172, 2838–2848

H. Tao; W. Liu; B.N. Simmons; H.K. Harris; T.C. Cox; M.A. Massiah; Biotechniques., 2010, 48, 61–64

M.A. Massiah; K.M. Wright; H. Du; Curr. Protoc. Protein Sci., 2016, 84, 6.13.1-6.13.24

R.R. Burgess; Chapter 17 Refolding Solubilized Inclusion Body Proteins, in: Methods Enzymol., 1st ed., Elsevier Inc., 2009, pp. 259–282

G. Zardeneta; P.M. Horowitz; Anal. Biochem., 1994, 223, 1–6

K. Nagy; Z. Kovács; P. Salamon; C.K. Orbán; S. Lányi; B. Albert; Stud. Univ. Babes-Bolyai Chem., 2019, 64, 101–110

S. Frankel; R. Sohn; L. Leinwand; Proc. Natl. Acad. Sci. U. S. A., 1991, 88, 1192–1196

Q. Zhuo; J.H. Piao; R. Wang; X.G. Yang; Protein Expr. Purif., 2005, 41, 53–60

D. Kumar; Ref. Modul. Life Sci., 2018, 1–17

S.A. Frankel; A. Leinwand, Leslie; Solubilization of protein after bacterial expression using Sarkosyl,U.S. Patent, 1993, 1–5

D. Nasrabadi; S. Rezaeiani; A. Sayadmanesh; M.B. Eslaminejad; A. Shabani; Avicenna J. Med. Biotechnol., 2018, 10, 202–207

A.K. Patra; G.K. Gahlay; B.V.V. Reddy; S.K. Gupta; A.K. Panda; Eur. J. Biochem., 2000, 267, 7075–7081

W. Li; Y. Yuan; Z. Luo; X. Zheng; L. Zhao; W. Duan; Y. Yu; Biosci. Biotechnol. Biochem., 2010, 74, 1173–1180

M.K. Tse; S.K. Hui; Y. Yang; S.T. Yin; H.Y. Hu; B. Zou; B.C.Y. Wong; K.H. Sze; PLoS One., 2011, 12, e28511

A. Takeda; T.K. Oberoi‐Khanuja; G. Glatz; K. Schulenburg; R. Scholz; A. Carpy; B. Macek; A. Remenyi; K. Rajalingam; EMBO J., 2014, 33, 1784–1801

U.K. Laemmli; Nature., 1970, 227 (5259), 680–685

Downloads

Published

2021-12-30

How to Cite

NAGY, K., KOVÁCS, Z., MIKLÓSSY, I., SALAMON, P., ORBÁN, C.-K., ALBERT, B., & LÁNYI, S. (2021). DETERGENT AIDED REFOLDING AND PURIFICATION OF RECOMBINANT XIAP FROM INCLUSION BODIES. Studia Universitatis Babeș-Bolyai Chemia, 66(4), 355–368. https://doi.org/10.24193/subbchem.2021.4.26

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.