DETERGENT AIDED REFOLDING AND PURIFICATION OF RECOMBINANT XIAP FROM INCLUSION BODIES
DOI:
https://doi.org/10.24193/subbchem.2021.4.26Keywords:
XIAP, inclusion body, solubilization, refolding, detergents, affinity chromatography.Abstract
Human proteins expressed in prokaryotic systems tend to form inclusion bodies. Proteins in inclusion bodies are inactive and the refolding of these densely packed protein molecules is affected by several factors depending on the applied refolding technique. To obtain the active form of protein the most common technique is denaturation of the protein aggregates followed by refolding of inclusion proteins. Conventional denaturants for solubilization are urea, guanidine hydrochloride and sodium dodecyl sulphate (SDS), while refolding can be achieved by several techniques found in the literature. In our study, the recombinant GST-tagged XIAP (X-linked Inhibitor of Apoptosis protein) construct was expressed as inclusion bodies. The protein was solubilized with high efficiency using N-Lauroylsarcosine (ionic detergent). A chromatography-based method using different ratios of detergents was investigated for the refolding process. Batch mode affinity purification was successfully executed using Glutathione Sepharose 4B resin and TritonX-100, n-octyl β-D-thio-glucopyranoside (OTG) and 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate hydrate (CHAPS) detergents in the appropriate ratio. Finally, the refolded protein was purified by size-exclusion chromatography and investigated by western blot analysis.References
C.M. Croce; J.C. Reed; Cancer Res., 2016, 76, 5914–5920
M.J. Roy; A. Vom; P.E. Czabotar; G. Lessene; Br. J. Pharmacol., 2014, 171, 1973–1987
R. Singh; A. Letai; K. Sarosiek; Nat. Rev. Mol. Cell Biol., 2019, 20, 175–193
P.J. Burke; Trends in Cancer., 2017, 3, 857–870
F. Cairrao; P.M. Domingos; Encycl. Life Sci. (ELS), John Wiley Sons, Ltd Chichester., 2010, pp. 1-8
Y. Estornes; M.J.M. Bertrand; Semin. Cell Dev. Biol., 2015, 39, 106–114
R. Saraei; M. Soleimani; A.A. Movassaghpour Akbari; M. Farshdousti Hagh; A. Hassanzadeh; S. Solali; Biomed. Pharmacother., 2018, 107, 1010–1019
P. Hundsdoerfer; I. Dietrich; K. Schmelz; C. Eckert; G. Henze; Pediatr Blood Cancer., 2009, 55, 260–266
H. Sun; L. Liu; J. Lu; S. Qiu; C.Y. Yang; H. Yi; S. Wang; Bioorganic Med. Chem. Lett., 2010, 20, 3043–3046
R. Feltham; B. Bettjeman; R. Budhidarmo; P.D. Mace; S. Shirley; S.M. Condon; S.K. Chunduru; M.A. McKinlay; D.L. Vaux; J. Silke; C.L. Day; J. Biol. Chem., 2011, 286, 17015–17028
G. Garg; S. Vangveravong; C. Zeng; L. Collins; M. Hornick; Y. Hashim; D. Piwnica-Worms; M.A. Powell; D.G. Mutch; R.H. Mach; W.G. Hawkins; D. Spitzer; Mol. Cancer., 2014, 13, 1–13
L. Bai; D.C. Smith; S. Wang; Pharmacol. Ther., 2014, 144, 82–95
A. Tchoghandjian; A. Soubéran; E. Tabouret; C. Colin; E. Denicolaï; C. Jiguet-Jiglaire; A. El-Battari; C. Villard; N. Baeza-Kallee; D. Figarella-Branger; Cell Death Dis., 2016, 7, 1–10
S. Fulda; Clinical Cancer Research, 2015, 21, 5030–5037
L. Manzoni; D. Gornati; M. Manzotti; S. Cairati; A. Bossi; D. Arosio; D. Lecis; P. Seneci; Bioorganic Med. Chem. Lett., 2016, 26, 4613–4619
A.C. West; B.P. Martin; D.A. Andrews; S.J. Hogg; A. Banerjee; G. Grigoriadis; R.W. Johnstone; J. Shortt; Oncogenesis., 2016, 5, e216-6
K. Welsh; S. Milutinovic; R.J. Ardecky; M. Gonzalez-Lopez; S.R. Ganji; P. Teriete; D. Finlay; S. Riedl; S.I. Matsuzawa; C. Pinilla; R. Houghten; K. Vuori; J.C. Reed; N.D.P. Cosford; PLoS One., 2016, 11, 1–19
D.M. Francis; R. Page; Curr. Protoc. Protein Sci., 2010, 61, 5.24.1-5.24.29
H. Yamaguchi; M. Miyazaki; Biomolecules., 2014, 4, 235–251
E. Kovács; L. Szilágyi; G. Koncz; Appl. Biochem. Biotechnol., 2013, 170, 819–830
C.J. Jeffery; Curr. Protoc. Protein Sci., 2016, 83, 29.15.1-29.15.15
A. Mohammadian; H. Kaghazian; A. Kavianpour; R. Jalalirad; Chem. Technol. Biotechnol., 2018, 93, 1579–1587
A. Basu; X. Li; S.S.J. Leong; Appl. Microbiol. Biotechnol., 2011, 92, 241–251
G. Gieseler; I. Pepelanova; L. Stuckenberg; L. Villain; V. Nölle; U. Odenthal; S. Beutel; U. Rinas; T. Scheper; Appl. Microbiol. Biotechnol., 2017, 101, 123–130
A.A. Padhiar; W. Chanda; T.P. Joseph; X. Guo; M. Liu; L. Sha; S. Batool; Y. Gao; W. Zhang; M. Huang; M. Zhong; Appl. Microbiol. Biotechnol., 2018, 102, 2363–2377
J. Zhang; X. Lv; R. Xu; X. Tao; Y. Dong; A. Sun; D. Wei; Appl. Microbiol. Biotechnol., 2015, 99, 6705–6713
K. Babaei Sheli; M. Ghorbani; A. Hekmat; B. Soltanian; A. Mohammadian; R. Jalalirad; Biotechnol. Reports., 2018, 19, e00259
A. Ghoshal; S.S. Ghosh; Appl. Biochem. Biotechnol., 2014, 175, 2087–2103
F. Naz; M. Asad; P. Malhotra; A. Islam; F. Ahmad; M.I. Hassan; Appl. Biochem. Biotechnol., 2014, 172, 2838–2848
H. Tao; W. Liu; B.N. Simmons; H.K. Harris; T.C. Cox; M.A. Massiah; Biotechniques., 2010, 48, 61–64
M.A. Massiah; K.M. Wright; H. Du; Curr. Protoc. Protein Sci., 2016, 84, 6.13.1-6.13.24
R.R. Burgess; Chapter 17 Refolding Solubilized Inclusion Body Proteins, in: Methods Enzymol., 1st ed., Elsevier Inc., 2009, pp. 259–282
G. Zardeneta; P.M. Horowitz; Anal. Biochem., 1994, 223, 1–6
K. Nagy; Z. Kovács; P. Salamon; C.K. Orbán; S. Lányi; B. Albert; Stud. Univ. Babes-Bolyai Chem., 2019, 64, 101–110
S. Frankel; R. Sohn; L. Leinwand; Proc. Natl. Acad. Sci. U. S. A., 1991, 88, 1192–1196
Q. Zhuo; J.H. Piao; R. Wang; X.G. Yang; Protein Expr. Purif., 2005, 41, 53–60
D. Kumar; Ref. Modul. Life Sci., 2018, 1–17
S.A. Frankel; A. Leinwand, Leslie; Solubilization of protein after bacterial expression using Sarkosyl,U.S. Patent, 1993, 1–5
D. Nasrabadi; S. Rezaeiani; A. Sayadmanesh; M.B. Eslaminejad; A. Shabani; Avicenna J. Med. Biotechnol., 2018, 10, 202–207
A.K. Patra; G.K. Gahlay; B.V.V. Reddy; S.K. Gupta; A.K. Panda; Eur. J. Biochem., 2000, 267, 7075–7081
W. Li; Y. Yuan; Z. Luo; X. Zheng; L. Zhao; W. Duan; Y. Yu; Biosci. Biotechnol. Biochem., 2010, 74, 1173–1180
M.K. Tse; S.K. Hui; Y. Yang; S.T. Yin; H.Y. Hu; B. Zou; B.C.Y. Wong; K.H. Sze; PLoS One., 2011, 12, e28511
A. Takeda; T.K. Oberoi‐Khanuja; G. Glatz; K. Schulenburg; R. Scholz; A. Carpy; B. Macek; A. Remenyi; K. Rajalingam; EMBO J., 2014, 33, 1784–1801
U.K. Laemmli; Nature., 1970, 227 (5259), 680–685
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.