INFLUENCE OF THE CAFFEINE ON THE INTERACTION BETWEEN HALOPERIDOL AND HUMAN SERUM ALBUMIN: SPECTROSCOPIC AND MOLECULAR DOCKING APPROACH

Authors

  • Miroslav SOVRLIĆ University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, Kragujevac 34000, Serbia. https://orcid.org/0000-0002-3300-6199
  • Ratomir JELIĆ University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, Kragujevac 34000, Serbia. https://orcid.org/0000-0001-9336-6412
  • Marko ANTONIJEVIĆ University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića bb, Kragujevac 34000, Serbia. https://orcid.org/0000-0003-3810-1694
  • Zoran MARKOVIĆ University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića bb, Kragujevac 34000, Serbia. https://orcid.org/0000-0001-5964-049X
  • Jovica TOMOVIĆ University of Kragujevac, Faculty of Medical Sciences, Department of Pharmacy, Svetozara Markovića 69, Kragujevac 34000, Serbia. *Corresponding author: jovicatomovic2011@gmail.com https://orcid.org/0000-0002-7300-5385
  • Emina MRKALIĆ University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića bb, Kragujevac 34000, Serbia. https://orcid.org/0000-0002-9708-2326

DOI:

https://doi.org/10.24193/subbchem.2021.4.01

Keywords:

Caffeine; Interaction; Human serum albumin; Haloperidol; Fluorescence.

Abstract

The interactions between human serum albumin (HSA) and haloperidol (HPD) in the presence or absence of caffeine (CAF) with HSA were studied by fluorescence-absorption spectroscopy and molecular modeling. The results showed that the presence of CAF decreased binding constants of HPD-HSA with increasing temperature from 1.07× 104 mol/dm3 to 3.13 x 102 mol/dm3. The results indicate that the HSA-HPD and HSA-CAF-HPD system is very thermally sensitive. The number of binding sites obtained at three different temperatures were close to 1 indicating the presence of one binding site of HPD, CAF on HSA. Fluorescence quenching was initiated by dynamic quenching procedure irrespective of the absence or presence of CAF. The negative value of the free energy change (∆G) indicates a spontaneous binding process of both, HPD to HSA protein and HPD to the HSA-CAF protein complex. The values of ∆H0<0 and ∆S0<0 for binding interaction HSA-HPD and HSA-CAF-HPD, indicate that interaction is enthalpy driven. Docking simulation results are confirmed that the most preferable place for binding HPD and CAF is the active site I, in domain II subdomain IIA. The present study suggested that the combined actions of HPD and CAF, may lead to further changes in HSA conformation.

References

T. Peters Jr.; All about albumin: biochemistry, genetics, and medical applications, 1st ed; San Diego: Academic press, 1995; pp. 382

F. Yang; Y. Zhang; H. Liang; Int. J. Mol. Sci., 2014, 15, 3580-3595.

I. Jerković; C.I. Tuberoso; P.M. Kuś; Z. Marijanović; M. Kranjac; RSC Adv., 2014, 4, 60557-60562.

A. Adan; J.M. Serra‐Grabulosa; Hum. Psychopharm. Clin., 2010, 25, 310-317.

Q. Wu; C. Li; Y. Hu; Y. Liu; Sci. China. Ser. B Chem., 2009, 52, 2205-2212.

W. Wang; W. Zhang; Y. Duan; Y. Jiang; L. Zhang; B. Zhao; P. Tu; Spectrochim. Acta. A Mol. Biomol. Spectrosc., 2013, 115, 57-63.

S. Miyamoto; G.E. Duncan; C.E. Marx; J.A. Lieberman; Mol. Psychiatry., 2005, 10, 79-104.

S. Kudo; T. Ishizaki; Clin. Pharmacokinet., 1999, 37, 435-456.

J.D. Berić; S.D. Stojanović; E.M. Mrkalić; Z.D. Matović; D.R. Milovanović; M.M. Sovrlić; R.M. Jelić; Monatsh. Chem., 2018, 149, 2359-2368.

C.P. de Morais e Coura; E.T. Paulino; C.M. Cortez; V.M. da Silva Fragoso; Serum albumin and the haloperidol pharmacokinectics. A study using a computational model. AIP Publishing LLC, 2016, p. 100009.

S. Schmidt; D. Gonzalez; H. Derendorf; J. Pharm. Sci., 2010, 99, 1107-1122.

O. Dömötör; C.G. Hartinger; A.K. Bytzek; T. Kiss; B.K. Keppler; E.A. Enyedy; J. Biol. Inorg. Chem., 2013, 18, 9-17.

Y.Q. Wang; H.M.Zhang; Q.H. Zhou; Eur. J. Med. Chem., 2009, 44, 2100-2105.

D. Raghav; S. Mahanty; K. Rathinasamy; Spectrochim. Acta. A Mol. Biomol. Spectrosc., 2020, 226, 117584.

M.M. Islam; V.K. Sonu; P.M. Gashnga; N.S. Moyon; S. Mitra; Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 2016, 152, 23-33.

Z. Limpouchová; K. Procházka; Theoretical principles of fluorescence spectroscopy. In Fluorescence Studies of Polymer Containing Systems; Springer, Cham., 2016; pp. 91-149.

K. Kitamura; A.A. Omran; C. Nagata; Y. Kamijima; R. Tanaka; S. Takegami; T. Kitade; ‎Chem. Pharm. Bull., 2006, 54, 972-976.

N. Seedher; Indian. J. Pharm. Sci., 2000, 62, 16-20.

J.J. Jing; B. Liu; X. Wang; X. Wang; L.L. He; X.Y. Guo; M.L. Xu; Q.Y. Li; B. Gao; B.Y. Dong; Lumin., 2017, 32, 1056-1065.

A.B. Khan; J.M. Khan; M.S. Ali; R.H. Khan; Spectrochim. Acta. A Mol. Biomol. Spectrosc., 2012, 97, 119-124.

X. An; J. Zhao; F. Cui; G. Qu; Arab. J. Chem., 2017, 10, 1781-1787.

J.R. Lakowicz; Principles of Fluorescence Spectroscopy; Plenum Press, New York, 1999; pp. 237-265.

J.R. Lakowicz; Quenching of Fluorescence. In: (eds) Principles of Fluorescence Spectroscopy; Springer, Boston, MA, 2006; pp. 277-330.

S.K. Dutta; S.K. Basu; K.K. Sen; Indian. J. Exp. Biol., 2006, 44, 123–127.

Z.J. Cheng; Y.T. Zhang; J. Mol. Struct., 2008, 889, 20-27.

M. Shahlaei; B. Rahimi; M.R. Ashrafi-Kooshk; K. Sadrjavadi; R. Khodarahmi; J. of Luminiscence, 2015, 158, 91-98.

L. Brunton; J. Lazo; K. Parker; Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 11th edn.; McGraw-Hill, New York, 2005.

N. Seedher; P. Agarwal; Drug. Metab. Pers. Ther., 2010, 25, 17-24.

Y.Q. Wang; H.M. Zhang; G.C. Zhang; W.H. Tao; S.H. Tang; J. Lumin., 2007, 126, 211-218.

M.G. Wen; X.B. Zhang; J.N. Tian; S.H. Ni; H.D. Bian; Y.L. Huang; H. Liang; J. Solute. Chem., 2009, 38, 391-401.

D. Leckband; Annu. Rev. Chem. Biomol. Eng., 2010, 1, 365-389.

R.A. Alberty; J. Phys. Chem. B., 2010, 114, 17003-17012.

J.Q. Lu; F. Jin; T.Q. Sun; X.W. Zhou; Int. J. Biol. Macromol., 2007, 40, 299-304.

D.B. Davies; L.N. Djimant; A.N. Veselkov; J. Chem. Soc. Faraday. Trans., 1996, 92, 383-390.

D.B. Davies; D.A. Veselkov; L.N. Djimant; A.N. Veselkov; Eur. Biophys. J., 2001, 30, 354-366.

P.D. Ross; S. Subramanian; Biochemistry., 1981, 20, 3096-3102.

J. Ghuman; P.A. Zunszain; I. Petitpas; A.A. Bhattacharya; M. Otagiri; S. Curry; J. Mol. Biol., 2005, 353, 38-52.

L. Trynda-Lemiesz; Bioorg. Med. Chem., 2004, 12, 3269-3275.

P.A. Ravindranath; S. Forli; D.S. Goodsell; A.J. Olson; M.F. Sanner; PLoS. Comput. Biol. 2015, 11, e1004586.

A.D. Becke; Phys. Rev. A.,1988, 38, 3098-3100.

A.D., Becke; J. Chem. Phys., 1993, 98, 5648.

[dataset] M.J. Frisch; G.W. Trucks; H.B. Schlegel; G.E. Scuseria; M.A. Robb; J.R. Cheeseman; G. Scalmani; V. Barone; B. Mennucci; G.A. Petersson; H. Nakatsuji; M. Caricato; X. Li; H.P. Hratchian; A.F. Izmaylov; J. Bloino; G. Zheng; J.L. Sonnenberg; M. Hada; M. Ehara; K. Toyota; R. Fukuda; J. Hasegawa; M. Ishida; T. Nakajima; Y. Honda; O. Kitao; H. Nakai; T. Vreven; J. Montgomery; J. A. Peralta; F. Ogliaro; M. Bearpark; J.J. Heyd; E. Brothers; K.N. Kudin; V.N. Staroverov; R. Kobayashi; J. Normand; K. Raghavachari; A. Rendell; J.C. Burant; S.S. Iyengar; J. Tomasi; M. Cossi; N. Rega; J.M. Millam; M. Klene; J.E. Knox; J.B. Cross; V. Bakken; C. Adamo; J. Jaramillo; R. Gomperts; R.E. Stratmann; O. Yazyev; A.J. Austin; R. Cammi; C. Pomelli; J.W. Ochterski; R.L. Martin; K. Morokuma; V.G. Zakrzewski; G.A. Voth; P. Salvador; J.J. Dannenberg; S. Dapprich; A.D. Daniels; Ö. Farkas; J.B. Foresman; J. V. Ortiz; J. Cioslowski; D.J. Fox; Gaussian 09. Revision D. Gaussian Inc, Wallingford, 2009.

I. Petitpas; C.E. Petersen; C.E. Ha; A.A. Bhattacharya; P.A. Zunszain; J. Ghuman; N.V. Bhagavan; S. Curry; Proc. Natl. Acad. Sci., 2005, 100, 6440-6445.

D.S. BIOVIA; Discovery studio visualizer, Release. San Diego: Dassault Systèmes, 2017.

G.M. Morris; R. Huey; W. Lindstrom; M.F. Sanner; R.K. Belew; D.S. Goodsell; A.J. Olson; ‎J. Comput. Chem., 2009, 30, 2785-2791.

Downloads

Published

2021-12-30

How to Cite

SOVRLIĆ, M., JELIĆ, R., ANTONIJEVIĆ, M., MARKOVIĆ, Z., TOMOVIĆ, J., & MRKALIĆ, E. (2021). INFLUENCE OF THE CAFFEINE ON THE INTERACTION BETWEEN HALOPERIDOL AND HUMAN SERUM ALBUMIN: SPECTROSCOPIC AND MOLECULAR DOCKING APPROACH. Studia Universitatis Babeș-Bolyai Chemia, 66(4), 7–22. https://doi.org/10.24193/subbchem.2021.4.01

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.