PREPARATION, PHYSICO-CHEMICAL CHARACTERIZATION AND ANTIBACTERIAL PROPERTIES OF CHITOSAN AND CHITOSAN–NISIN MEMBRANES
DOI:
https://doi.org/10.24193/subbchem.2022.1.14Keywords:
chitosan, membrane, nisin, antimicrobial peptide, biodegradable polymer.Abstract
Different types of chitosan were used to prepare membranes with enhanced antibacterial properties, via the solvent casting method. Nisin, an antimicrobial peptide, already use in food preservation, was incorporated in chitosan membranes to enhance the bactericidal effect, to obtain a starting material intended for use as wound dressings. The physico-chemical properties of the membranes were monitored and the results showed a good swelling capacity and water vapor transmission rate of the membranes. Optical characterization data showed that chitosan-based membranes could provide ultraviolet light protection while in vitro biodegradability assay demonstrated good stability of the films under enzymatic degradation. Nisin improved significantly the antibacterial effect of the membranes, while the nisin-chitosan membrane-forming solutions had a bactericidal effect against both Gram-positive and Gram-negative bacteria.
References
A. Matica; G. Menghiu; V. Ostafe; New Front Chem, 2017, 26, 55-63.
A. Matica; G. Menghiu; V. Ostafe; New Front Chem, 2017, 26, 39-54.
A. Matica; G. Menghiu; V. Ostafe; New Front Chem, 2017, 26, 75-86.
V. Patrulea; V. Ostafe; G. Borchard; O. Jordan; Eur J Pharm Biopharm, 2015, 97, 417-426.
M.A. Matica; F.L. Aachmann; A. Tøndervik; H. Sletta; V. Ostafe; Int J Mol Scie, 2019, 20, 5889.
C. Moraru; M. Mincea; G. Menghiu; V. Ostafe; Molecules, 2020, 25, 4758.
M. Mahlapuu; J. Håkansson; L. Ringstad; C. Björn; Front Cell Infect Microbiol, 2016, 6, 194-194.
J.C.P. Santos; R.C.S. Sousa; C.G. Otoni; A.R.F. Moraes; V.G.L. Souza; E.A.A. Medeiros; P.J.P. Espitia; A.C.S. Pires; J.S.R. Coimbra; N.F.F. Soares; Innov Food Sci Emerg Technol, 2018, 48, 179-194.
Z. Najmi; A. Kumar; A.C. Scalia; A. Cochis; B. Obradovic; F.A. Grassi; M. Leigheb; M. Lamghari; I. Loinaz; R. Gracia; L. Rimondini; Front. Bioeng. Biotechnol., 2020, 8.
J.M. Shin; J.W. Gwak; P. Kamarajan; J.C. Fenno; A.H. Rickard; Y.L. Kapila; J Appl Microbiol, 2016, 120, 1449-1465.
C. Schmitz; L.G. Auza; D. Koberidze; S. Rasche; R. Fischer; L. Bortesi; Mar Drugs, 2019, 17, 452.
A. Aljawish; L. Muniglia; A. Klouj; J. Jasniewski; J. Scher; S. Desobry; Food Hydrocoll., 2016, 60, 551-558.
A. Jozala; L. de Lencastre Novaes; A. Pessoa. Nisin. In Concepts, Compounds and the Alternatives of Antibacterials, V. Bobbarala, Ed. InterchOpen: 2015; pp. 103-123.
J. Wattjes; S. Sreekumar; C. Richter; S. Cord-Landwehr; R. Singh; N.E. El Gueddari; B.M. Moerschbacher; React Funct Polym, 2020, 151, 104583.
J. Ostrowska-Czubenko; M. Gierszewska; M. Pieróg; J. Polym. Res, 2015, 22, 153.
F. Blind; S. Fränzle; Polysaccharides, 2021, 2, 773-794.
J.D. Bumgardner; V.P. Murali; H. Su; O.D. Jenkins; D. Velasquez-Pulgarin; J.A. Jennings; A. Sivashanmugam; R. Jayakumar. Characterization of chitosan matters. In Chitosan Based Biomaterials Volume 1, J.A. Jennings, J.D. Bumgardner, Eds. Woodhead Publishing: 2017; pp. 81-114.
Y. Ma; L. Xin; H. Tan; M. Fan; J. Li; Y. Jia; Z. Ling; Y. Chen; X. Hu; Mater. Sci. Eng. C, 2017, 81, 522-531.
19. M.J. Bof; V.C. Bordagaray; D.E. Locaso; M.A. García; Food Hydrocoll., 2015, 51, 281-294.
J. Kingkaew; S. Kirdponpattara; N. Sanchavanakit; P. Pavasant; M. Phisalaphong; Biotechnol Bioprocess Eng., 2014, 19, 534-544.
D. Yarboro; A. Millar; R. Smith; Wound management & prevention, 2019, 65, 16-22.
A. Gupta; P. Avci; T. Dai; Y.-Y. Huang; M. Hamblin; Adv Wound Care, 2013, 2, 422-437.
S.K. Mishra; S. Raveendran; J.M. Ferreira; S. Kannan; Langmuir., 2016, 32, 10305-10316.
A.I. Visan; G. Popescu-Pelin; G. Socol; Polymers, 2021, 13.
C. Wu; T. Wu; Z. Fang; J. Zheng; S. Xu; S. Chen; Y. Hu; X. Ye; RSC Adv., 2016, 6, 46686-46695.
L. Remedio; J. Santos; V. Maciel; C. Yoshida; R. Carvalho; Food Hydrocoll., 2018, 87.
X. Zhu; H. Wu; J. Yang; J. Tong; J. Yi; Z. Hu; J. Hu; T. Wang; L. Fan; React. Funct. Polym, 2015, 91-92, 71-76.
N. Cé; C.P.Z. Noreña; A. Brandelli; CYTA J Food., 2012, 10, 21-26.
J.L. Webber; R. Namivandi-Zangeneh; S. Drozdek; K.A. Wilk; C. Boyer; E.H.H. Wong; B.H. Bradshaw-Hajek; M. Krasowska; D.A. Beattie; Sci. Rep., 2021, 11, 1690.
M.L. Mangoni; A.M. McDermott; M. Zasloff; Exp Dermatol, 2016, 25, 167-173.
H. Felgueiras; M.T. Amorim; Colloids Surf B Biointerfaces, 2017, 156.
L.W. Place; T. Helmonds; S.F. Filocamo. Development and Characterization of Methods to Encapsulate Nisin for Use as an Antimicrobial Agent; Natick Soldier Research, Development and Engineering Center: 2018.
L. Cui; S. Gao; X. Song; L. Huang; H. Dong; J. Liu; F. Chen; S. Yu; RSC Advances, 2018, 8, 28433-28439.
R.I. Nakayama; K. Katsumata; Y. Niwa; N. Namiki; Membranes, 2020, 10.
A.K. Azad; N. Sermsintham; S. Chandrkrachang; W.F. Stevens; Journal of biomedical materials research. Part B, Applied biomaterials, 2004, 69, 216-222.
Z. Yu; F.K. Alsammarraie; F.X. Nayigiziki; W. Wang; B. Vardhanabhuti; A. Mustapha; M. Lin; Food Res. Int., 2017, 99, 166-172.
S. Ahmed; S. Ikram; J. Photochem. Photobiol. B, Biol., 2016, 163, 115-124.
A. Nouri; M.T. Yaraki; M. Ghorbanpour; S. Agarwal; V.K. Gupta; Int. J. Biol. Macromol., 2018, 109, 1219-1231.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.