NEWLY DEVELOPED STATISTICALLY INTENSIVE QSAR MODELS FOR BIOLOGICAL ACTIVITY OF ISATIN DERIVATIVES

Authors

DOI:

https://doi.org/10.24193/subbchem.2022.1.09

Keywords:

QSAR, computational chemistry, isatin derivatives, biological activity, DFT.

Abstract

The present study introduces a new approach for the quantitative structure-activity relationship (QSAR) issue, which can be called a statistically intensive or condensed QSAR model. This idea was successfully applied to the published data of 32 biologically active molecules derived from 4-(1-aryl-2-oxo-1,2-dihydro-indol-3-ylideneamino)-N-substituted benzene sulfonamides for mixed bacteria and specific bacteria like B.subtilis, E.coli, and S.aureus. The suggested four statistically intensive QSAR (SIQSAR) models possess only two descriptors with excellent statistical parameters, as their values of the square regression coefficient (r2) and cross-validation (q2) are lying within the range of 0.967-0.997 and 0.961-0.996, respectively. A zero-one correction term (ZO) reflects the effect of substituents, which was proposed as a second descriptor for two sets of biologically active compounds. In general, the results showed that the biological activity is depended majorly on the topographical properties, and predominated by the field-effect in contrast to an electronic one. The interesting feature of SIQSAR models is their closeness to mathematical methods such as simultaneous linear equation method by eliminating the common inaccuracy and unrealistic statistical treatments. The obtained SIQSAR models were employed for predicting new and efficient biologically active molecules derived from isatin.

References

J. Leszczynski, M.K. Shukla; Practical Aspects of Computational Chemistry II: An Overview of the Last Two Decades and Current Trends, Springer, Dordrecht, 2012, pp. 1-361

E. Benfenati;Theory guidance and applications on QSAR and REACH, Istituto di Ricerche Farmacologiche “Mario Negri”, Milan, Italy, 2012, pp. 1-39

Y. Fukunishi, S. Yamasaki, I. Yasumatsu, K. Takeuchi, T. Kurosawa, H. Nakamura; Mol. Inform., 2017, 36, 1-9

I. Hussain, K.K. Bania, N.K. Gour, R.C. Deka; ChemSelect, 2019, 1, 4973-4978

Y. Cao, J. Romero, J.P. Olson, M. Degroote, P.D. Johnson, M. Kieferová, I.D. Kivlichan, T. Menke, B. Peropadre, N.P.D. Sawaya, S. Sim, L. Veis, A. Aspuru-Guzik; Chem. Rev., 2019, 119, 10856-10915

J.C.G. Martinez, E.G. Vega-Hissi, M.F. Andrada, M.R. Estrada; Expert. Opin. Drug. Discov., 2014, 10, 37-51

R.A. Khalil, A.A. Zarari; Appl. Surf. Sci., 2014, 318, 85-59

R.A. Khalil; Colloid Surface A., 2006, 286, 51-56

Y.A. Shahab, R.A. Khalil; Spectrochim. Acta A., 2006, 65, 265-270

R.A. Khalil, A.Y. Hamed; Arab J. Phys. Chem., 2015, 2, 56-63

R. Pingaew, P. Mandi, V. Prachayasittikul, S. Prachayasittikul, S. Ruchirawat, V. Prachayasittikul; Eur. J. Med. Chem., 2018, 143, 1604-1615

R.A. Khalil, A.A. Zarari; J. Turk. Chem. Soc. A. (JOTCSA), 2015, 2, 42-52

M.B. Larsson, M.M. Kumar, M. Tysklind, A. Linusson, P.L. Andersson; SAR QSAR Environ. Res., 2013, 24, 416-479

J. Liu, F. Li, Y. Wang, H. Zhang, J. Dong, P. Sun, Y. Li, Z. Li; Chinese Chem. Lett., 2019, 30, 668-671

R.A. Khalil; A Simple Approach to Quantum Chemistry. Nova Science Publoshers, Inc., New York, 2020, pp. 119-127

S. Mor, P. Pahal, B. Narasimhan; Eur J. Med. Chem., 2016, 53, 176-189

D.F. Kawano, C.A. Taft, C.H.T.P. da Silva; Curr. Phys. Chem., 2016, 6, 105-114

O.M. Antypenko, S.I. Kovalenko, O.V. Karpenko, V.O. Nikitin, L.M. Antypenko; Helv. Chim. Acta., 2016, 99, 621-631

M. Majewsky, D. Wagner, M. Delay, S. Bräse, V. Yargeau, H. Horn; Chem. Res. Toxicol.; 2014, 101, 1821-1828

J.T. Ristovski, N. Janković, V. Borčić, S. Jain, Z. Bugarčić, M. Mikov; J. Pharmaceut. Biomed., 2018, 155, 42-49

P. Kumar, B. Narasimhan, K. Ramasamy, V. Mani, R.K. Mishra, A. Abdul Majeed; Curr. Top. Med. Chem., 2015, 15, 1050-1064

M. Ghamali, S. Chtita, A. Aouidate, A. Ghaleb, M. Bouachrine, T. Lakhlifi; J. Taibah. Univ. Sci., 2017, 11, 422-433

D. Verma, P. Kumar, B. Narasimhan, K. Ramasamy, V. Mani, R.K. Mishra, A. Abdul Majeed; Arab. J. Chem., 2019, 12, 2882-2896

M. Kumar, K. Ramasamy, V. Mani, R.K. Mishra, A. Abdul Majeed, E. De Clercq, B. Narasimhan; Arab. J. Chem., 2014, 7, 396-408

Downloads

Published

2022-03-30

How to Cite

KHALIL, R. A., & ABDULRAHMAN, . S. H. . (2022). NEWLY DEVELOPED STATISTICALLY INTENSIVE QSAR MODELS FOR BIOLOGICAL ACTIVITY OF ISATIN DERIVATIVES . Studia Universitatis Babeș-Bolyai Chemia, 67(1), 139–152. https://doi.org/10.24193/subbchem.2022.1.09

Issue

Section

Articles

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.