THE INFLUENCE OF AGRICULTURAL SOIL PREPARATION METHODS ON THE PSEUDO-TOTAL ELEMENT CONTENT DETERMINED BY ICP-OES

Authors

DOI:

https://doi.org/10.24193/subbchem.2022.1.03

Keywords:

soil, digestion methods, macro and microelements, inductively coupled plasma optical emission spectrometry, ANOVA

Abstract

The five agricultural soil preparation methods for the purpose of determining the pseudo-total content of 20 elements (Al, As, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, P, Pb, S, Si and Zn) in 4 soil samples taken from different plots of soils in the vicinity of Vranje (Southern Serbia) was applied in this paper. The following methods were used: digestion with aqua regia and hydrogen-peroxide with heating at temperature 190 °C, digestion with aqua regia and hydrogen-peroxide in combination with ultrasound with heating at temperature 95 °C, digestion with reverse aqua regia and hydrogen-peroxide with heating at temperature 190 °C, and digestion with nitric acid and hydrogen-peroxide under reflux with heating at temperature 95 °C, and digestion with perchloric acid with heating at temperature 190 °C. The results were statistically processed using an ANOVA test. The results obtained by this study show that the amount of extracted elements from the soil is influenced by several different factors including the following: soil type, soil content and chemical form of the elements.

References

A. Kabata-Pendias; H. Pendias; Trace elements in soils and plants, 3rd ed.; Boca Raton London, New York Washington, 2001

E. Vavoulidou, E. J. Avramides; P. Papadopoulos; A. D. Nagref; Water. Air. Soil Pollut., 2004, 4, 631–640

E. Fässler; B. H. Robinson; W. Stauffer; S. K. Gupta; A. Papritz; R. Schulin; Agric. Ecosyst. Environ., 2010, 136, 49–58

Y. Bulent; A. Senay; C. Harun; S. Halis; African J. Agric. Res., 2014, 9, 465–472

C. Voica; A. Dehelean; A. Iordache; I. Geana; Rom. Reports Phys., 2012, 64, 221–231

A. Dumčius; D. Paliulis; J. Kozlovska-Kȩdziora; Ekologija, 2011, 57, 30–38

M. Ahmadi; R. Akhbarizadeh; N. J. Haghighifard; G. Barzegar; S. Jorfi; J. Environ. Heal. Sci. Eng., 2019, 17, 657–669

J.E. Fergusson; The Heavy Elements: Chemistry, Environmental Impact, and Health Effects, 1st ed.; Pergamon Press, Oxford, 1991

M. Secer; A. Bodur; Ö.L. Elmaci; S. Delibacak; N. Iqbal; Int. J. water, 2002, 2, 197–211

C. Aydinalp; A.V. Katkat; Plant, Soil Environ., 2004, 50, 212–217

V.I. Safarova; G.F. Shaidullina; T.N. Mikheeva; F.K. Kudasheva; N.R. Nizamutdinova; Inorg. Mater., 2011, 47, 1512–1517

S.N. Dos Santos; L.R.F. Alleoni; Water. Air. Soil Pollut., 2013, 224, 1–16

M. Biro; D. Kavšek; J. Karasiński; P. Szwarczewski; E. Bulska; D.B. Vončina; Cent. Eur. J. Chem., 2014, 12, 687–699

B.A. Zarcinas; C.F. Ishak; M.J. McLaughlin; G. Cozens; Environ. Geochem. Health, 2004, 26, 343–357

K.-H. Baek; H.-H. Kim; J.-S. Park; B. Bae; Y.-Y. Chang; I.-S. Lee; Korean J. Ecol., 2004, 27, 231–237

S. Zhao; Z. Shen; L. Duo; Environ. Sci. Pollut. Res., 2014, 22, 5263–5270

W. Addis; A. Abebaw; Cogent Chem., 2017, 3, 1–12

W.J.S. Mwegoha; C. Kihampa; African J. Environ. Sci. Technol., 2010, 4, 763–769

M. Senila; O. Cadar; L. Senila; A. Becze; M. Roman; B. Angyus; G. Bruj; Studia UBB Chemia, 2021, 66, 105–116

P.B. Corguinha; G.A. de Souza; V.C. Gonçalves; C. de A. Carvalho; W.E.A. de Lima; F.A.D. Martins; C.H. Yamanaka; E.A.B. Francisco; L.R.G. Guilherme; J. Food Compos. Anal., 2014, 37, 143–150

O. Fayiga; L.Q. Ma; Q. Zhou; Environ. Pollut., 2007, 147, 737–742

United States Environmental Protection Agency (USEPA), https://www.epa.gov/sites/production/files/2015-12/documents/3052.pdf, (accessed 3 March 2021)

United States Environmental Protection Agency (USEPA), https://www.epa.gov/sites/production/files/2015-06/documents/epa-3050b.pdf, (accessed 3 March 2021)

United States Environmental Protection Agency (USEPA), https://www.epa.gov/sites/production/files/2015-12/documents/3051a.pdf, (accessed 3 March 2021)

V. Suthar; K.S. Memon; M. Mahmood-Ul-Hassan; Environ. Monit. Assess., 2014, 186, 3957–3968

A. Papadopoulos; C. Prochaska; F. Papadopoulos; N. Gantidis; E. Metaxa; Environ. Manage., 2007, 40, 719–726

R.M. Nair; D. Thavarajah; P. Thavarajah; R.R. Giri; D. Ledesma; R.Y. Yang; P. Hanson; W. Easdown; J.d.A. Hughes; J.D.H.D. Keatinge; J. Food Compos. Anal., 2014, 39, 23–32

J. Uhrovčík; Talanta, 2014, 119, 178–180

M.E. Ghanjaoui; M.L. Cervera; E.l. Rhazi, M. de la Guardia; Food Chem., 2011, 125, 1309–1313

S.A. Oliveira; S.R.L. Tavares; C.F. Mahler; 2008

D. Florian; R.M. Barnes; G. Knapp; Fresenius J. Anal. Chem., 1998, 362, 558–565

Downloads

Published

2022-03-30

How to Cite

PETROVIĆ, S., MRMOŠANIN, J., PAVLOVIĆ, A., ALAGIĆ, S., TOŠIĆ, S., & STOJANOVIĆ, G. (2022). THE INFLUENCE OF AGRICULTURAL SOIL PREPARATION METHODS ON THE PSEUDO-TOTAL ELEMENT CONTENT DETERMINED BY ICP-OES. Studia Universitatis Babeș-Bolyai Chemia, 67(1), 43–60. https://doi.org/10.24193/subbchem.2022.1.03

Issue

Section

Articles

Similar Articles

<< < 20 21 22 23 24 25 26 27 28 29 > >> 

You may also start an advanced similarity search for this article.