HALOGEN-BONDED SUPRAMOLECULAR ARCHITECTURES INVOLVING 2,7-DIPYRIDYLFLUORENE AND 1,3,5-TRIFLUORO-2,4,6-TRIIODOBENZENE TECTONS – A SPECTACULAR EVOLUTION FROM CATEMERS TO 2D HALOGEN BOND ORGANIC FRAMEWORKS (XBOF)

Authors

  • Lidia CĂTA Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry and SOOMCC, Cluj-Napoca, 11 Arany Janos, 400028, Cluj-Napoca, Romania.
  • Ioana Georgeta GROSU National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath str., RO-400293, Cluj-Napoca, Romania. https://orcid.org/0000-0003-1174-2790
  • Maria MICLӐUȘ National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath str., RO-400293, Cluj-Napoca, Romania. https://orcid.org/0000-0002-9738-2417
  • Niculina Daniela HӐDADE Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry and SOOMCC, Cluj-Napoca, 11 Arany Janos, 400028, Cluj-Napoca, Romania. https://orcid.org/0000-0001-5882-5759
  • Ion GROSU Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry and SOOMCC, Cluj-Napoca, 11 Arany Janos, 400028, Cluj-Napoca, Romania. https://orcid.org/0000-0003-3754-854X
  • Anamaria TEREC Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry and SOOMCC, Cluj-Napoca, 11 Arany Janos, 400028, Cluj-Napoca, Romania. *Corresponding author: anamaria.terec@ubbcluj.ro https://orcid.org/0000-0002-2754-9525

DOI:

https://doi.org/10.24193/subbchem.2022.2.12

Keywords:

N···I and I···F halogen bonds, XBOFs, dipyridylfluorene, 1,3,5-trifluoro-2,4,6-triiodobenzene, single crystal X-ray diffraction structure.

Abstract

A spectacular 2D Halogen Bond Organic Framework (XBOF) was prepared by the mechanochemical solvent-drop grinding method (SCD) starting from 2,7-dipyridylfluorene and 1,3,5-trifluoro-2,4,6-triiodobenzene tectons. The formation of the supramolecular assembly was proved by powder X-ray diffraction measurements and the structural details were collected from the single crystal X-ray diffraction investigations.

References

a) J.-M. Lehn, Supramolecular chemistry: concepts and perspectives; VCH, Weinheim, 1995; b) J. W. Steed, J. L. Atwood, Supramolecular Chemistry, Wiley, New York, 2009; c) Lehn, J.-M., Angew. Chem. Int. Ed. 2015, 54, 3276 – 3289; d) D. Qiao, H. Joshi, H. Zhu, F. Wang, Y. Xu, J. Gao, F. Huang, A. Aksimentiev, J. Feng, J. Am. Chem. Soc. 2021, 143, 15975−15983; e) J. Wang, Y.-Y. Ju, K.-H. Low, Y.-Z. Tan, J. Liu, Angew. Chem. Int. Ed. 2021, 60, 11814 –11818; f) M. Balog, I. Grosu, G. Plé, Y.Ramondenc, E. Condamine, R. Varga, J. Org. Chem. 2004, 69, 1337-1345.

a) S. Sarkar, P. Sarkar, P. Ghosh, J. Org. Chem. 2021, 86, 6648−6664; b) C. V. Crişan, A. Soran, A. Bende, N. D. Hӑdade, A. Terec, I. Grosu, Molecules, 2020, 25, nr. 3789; c) C.V. Crişan, A. Terec, N. D. Hădade, I. Grosu, Tetrahedron, 2015, 71, 6888-6893.

a) W. Wang, Y.-X. Wang, H.-B. Yang, Chem. Soc. Rev. 2016, 45, 2656–2693; b) G. Liu, M. Zeller, K. Su, J. Pang, Z. Ju, D. Yuan, M. Hong, Chem. Eur. J. 2016, 22, 17345 – 17350; c) S. Wang, T. Sawada, K. Ohara, K. Yamaguchi, M. Fujita, Angew. Chem. Int. Ed. 2016, 55, 2063 –2066.

a) J. E. M. Lewis, M. Galli, S. M. Goldup, Chem. Commun. 2017, 53, 298—312; b) N. Pearce, M. Tarnowska, N. J. Andersen, A. Wahrhaftig-Lewis, B. S. Pilgrim, N. R. Champness, Chem. Sci., 2022, 13, 3915–3941; c) C.-Y. Chen, H.-C. Xu, T.-H. Ho, C.-J. Hsu, C.-C. Lai, Y.-H. Liu, S.-M. Peng, S.-H. Chiu, J. Org. Chem. 2021, 86, 13491−13502.

a) I. Hisaki, J. Incl. Phenom. Macrocycl. Chem. 2020, 96, 215–231; b) P. Li, P. Li, M. R. Ryder, Z. Liu, C. L. Stern, O. K. Farha, J. F. Stoddart Angew. Chem. Int. Ed. 2019, 58, 1664 – 1669; c) R.-B. Lin, Y. He, P. Li, H. Wang, W. Zhou, B. Chen, Chem. Soc. Rev. 2019, 48, 1362-1389; d) T. Adachi, M.D. Ward, Acc. Chem. Res. 2016, 49, 2669 – 2679; e) Y.-L. Li, E. V. Alexandrov, Q. Yin, L. Li, Z.-B. Fang, W. Yuan, D. M. Proserpio, T.-F. Liu, J. Am. Chem. Soc. 2020, 142, 7218−7224; f) M. Circu, V. Pascanu, A. Soran, B. Braun, A. Terec, C. Socaci, I. Grosu, CrystEngComm, 2012, 14, 632-639.

a) Y. Feng, D. Philp, J. Am. Chem. Soc. 2021, 143, 17029−17039; b) Y. Liu, J. Dai, Z. Zhang, Y. Yang, Q. Yang, Q. Ren, Z. Bao, Chem Asian J. 2021, 16, 3978–3984; c) I. Hisaki, C. Xin, K. Takahashi, T. Nakamura, Angew. Chem. Int. Ed. 2019, 58, 11160 – 11170; d) S. A. Boer, M. Morshedi, A. Tarzia, C. J. Doonan, N. G. White, Chem. Eur. J. 2019, 25, 10006 – 10012; e) L. Pop, N. D. Hădade, A. van der Lee, M. Bărboiu, I. Grosu, Y.-M. Legrand, Cryst. Growth Des., 2016, 16, 3271–3278.

a) L. Sun, W. Zhu, X. Zhang, L. Li, H. Dong, W. Hu, J. Am. Chem. Soc. 2021, 143, 19243−19256; b) G. Gong, S. Lv, J. Han, F. Xie, Q. Li, N. Xia, W. Zeng, Y. Chen, L. Wang, J. Wang, S. Chen, Angew. Chem. Int. Ed. 2021, 60, 14831 –14835; c) I. G. Grosu, L. Pop, M. Miclӑuş, N. D. Hӑdade, A. Terec, A. Bende, C. Socaci, M. Bӑrboiu, I. Grosu, Cryst. Growth Des., 2020, 20, 3429-3441; d) L. Pop, I. G. Grosu, M. Miclăuş, N. D. Hădade, A. Pop, A. Bende, A. Terec, M. Barboiu, I. Grosu, Cryst. Growth Des., 2021, 21, 1045-1054; e) M. Miclăuș, X. Filip, C. Filip, F. Martin, I. G. Grosu, J. Pharm. Biomed. Anal. 2016, 124, 274-280.

a) F. Biedermann, W. M. Nau, H.-J. Schneider, Angew. Chem., Int. Ed. 2014, 53, 11158−11171; b) J. H. Jordan, B. C. Gibb, Chem. Soc. Rev. 2015, 44, 547−585; c) L. Pop, F. Dumitru, N. D. Hǎdade, Y.-M. Legrand, A. van der Lee, M. Bǎrboiu, I. Grosu, Org. Lett. 2015, 17, 3494−3497.

a) H. Su, S. A. H. Jansen, T. Schnitzer, E. Weyandt, A. T. Rösch, J. Liu, G. Vantomme, E. W. Meijer, J. Am. Chem. Soc. 2021, 143, 17128−17135; b) J. Hwang, P. Li, K. D. Shimizu, Org. Biomol. Chem. 2017, 15, 1554−1564; c) A. Das, S. Ghosh, Angew. Chem., Int. Ed. 2014, 53, 2038−2054.

a) S. Yang, A. Miyachi, T. Matsuno, H. Muto, H. Sasakawa, K. Ikemoto, H. Isobe J. Am. Chem. Soc. 2021, 143, 15017−15021; b) D. Preston, Angew. Chem. Int. Ed. 2021, 60, 20027 – 20035; c) J. Shi, M. Wang, Chem Asian J. 2021, 16, 4037–4048.

a) I. G. Grosu, M. I. Rednic, M. Miclǎuş, I. Grosu, A. Bende, Phys. Chem. Chem. Phys. 2017, 19, 20691-20698; b) M. I. Rednic, R. A. Varga, A. Bende, I. G. Grosu, M. Miclăuş, N. D. Hădade, A. Terec, E. Bogdan, I. Grosu, Chem. Commun., 2016, 52, 12322-12325.

a) D. M. P. Mingos, Series Editor for Structure and Bonding, Metrangolo, P; Resnati, G; editors for volume 126: Halogen Bonding – Fundamentals and Applications, Springer, Berlin, 2008, volume 126; b) P. Metrangolo, G. Resnati, editors, Halogen Bonding II, Impact on the Materials Chemistry and Life Sciences, Topics in Current Chemistry, Springer, Berlin, 2015, volume 359; c) P. M. J. Szell, S. Zablotny, D. L. Bryce, Nat. Commun. 2019, Article number: 916; d) G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, G. Terraneo, Chem. Rev. 2016, 116, 2478 – 2601.

a) M. C. Pfrunder, A. S. Micallef, L. Rintoul, D. P. Arnold, K. J. P. Davy, J. McMurtrie, Cryst. Growth Des. 2014, 14, 6041−6047; b) V. I. Nikolayenko, D. C. Castell, D. P. van Heerden, L. J. Barbour, Angew. Chem., Int. Ed. 2018, 57, 12086−12091; c) D. Bulfield, E. Engelage, L. Mancheski, J. Stoesser, S. M. Huber, Chem. Eur. J. 2020, 26, 1567−1575.

a) N. Biot, D. Bonifazi, Chem. Eur. J. 2020, 26, 2904−2913; b) M. Su, X. Yan, X. Guo, Q. Li, Y. Zhang, C. Li, Chem. Eur. J. 2020, 26, 4505−4509; c) M.-P. Zhuo, Y.-C. Tao, X.-D. Wang, Y. Wu, S. Chen, L.-S. Liao, L. Jiang, Angew. Chem. Int. Ed. 2018, 57, 11300−11304; d) N. Baus Topić, N. Bedeković, K. Lisac, V. Stilinović, D. Cinčić, Cryst. Growth Des. 2022, 22, 3981-3989.

a) S. Shankar, O. Chovnik, L. Shimon, M. Lahav, M. E. van der Boom, Cryst. Growth Des. 2018, 18, 1967−1977; b) N. Chongboriboon, K. Samakun, T. Inprasit, F. Kielar, W. Dungkaew, L. W.-Y. Wong, H. H.-Y. Sung, D. B. Ninkovic, S. D. Zaric, K. Chainok, CrystEngComm 2020, 22, 24−34; c) K. Raatikainen, K. Rissanen, CrystEngComm 2011, 13, 6972−6977.

a) J. L. Howard, Q. Cao, D. L. Browne, Chem. Sci. 2018, 9, 3080−3094; b) M. Leonardi, M. Villacampa, J. C. Menéndez, Chem. Sci. 2018, 9, 2042−2064; c) M. Obst, B. Konig, Eur. J. Org. Chem. 2018, 4213−4232.

O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339-341.

G. M. Sheldrick, Acta Cryst. A 2015, 71, 3-8.

Downloads

Published

2022-06-30

How to Cite

CĂTA, L., GROSU, I. G., MICLӐUȘ M., HӐDADE N. D., GROSU, I., & TEREC, A. (2022). HALOGEN-BONDED SUPRAMOLECULAR ARCHITECTURES INVOLVING 2,7-DIPYRIDYLFLUORENE AND 1,3,5-TRIFLUORO-2,4,6-TRIIODOBENZENE TECTONS – A SPECTACULAR EVOLUTION FROM CATEMERS TO 2D HALOGEN BOND ORGANIC FRAMEWORKS (XBOF). Studia Universitatis Babeș-Bolyai Chemia, 67(2), 193–203. https://doi.org/10.24193/subbchem.2022.2.12

Issue

Section

Articles

Similar Articles

<< < 14 15 16 17 18 19 20 > >> 

You may also start an advanced similarity search for this article.