Recovery of Phenolic Compounds From Wild Bilberry, Blackcurrant and Blackberry Pomaces by Maceration and Ultrasound-assisted Extraction
DOI:
https://doi.org/10.24193/subbchem.2024.1.13Keywords:
fruit pomaces, extraction, total phenolics content, total anthocyanins content, DPPH radical scavenging activity, correlationsAbstract
Wild bilberry, blackcurrant and blackberry fruit pomaces obtained after industrial juice processing were extracted in water, 1% citric acid, 40%, 60% and 80% (v/v) aqueous ethanol using two extraction methods: maceration and ultrasound-assisted extraction. The total phenolics content (TPC), total anthocyanins content (TAC), and DPPH radical scavenging activity (RSA) were quantified in the extracts. TPC was about 2.3-3.2 times higher in ethanolic extracts as compared with the water extracts. The extracts made in 60% aqueous ethanol showed the highest values of TPC, TAC and RSA irrespective of extraction method and pomace matrix while water and 1% aqueous citric acid were very little effective in recovering anthocyanins and phenolic compounds. Bilberry pomace extracts made in 60% ethanol using maceration presented the highest TAC (585.21 mg CGE/L), TPC (3381.82 mg GAE/L) and RSA (2.05 mmol Trolox/l). The results showed that bilberry, blackcurrant and blackberry fruit pomaces can be a valuable source of bioactive compounds to be used in food supplements and functional foods.
References
H. I. O. Basegmez; D. Povilaitis; V. Kitrytė; V. Kraujalienė; V. Šulniūtė; C. Alasalvar; P. R. Venskutonis; J. Supercrit Fluids, 2017, 124, 10–19
O. Golovinskaia; C.-K. Wang; Molecules, 2021, 26, 3904
N. P. Kelly; A. L. Kelly; J.A. O’Mahony; Trends Food Sci. Technol., 2019, 83, 248–258
K. Kumar; S. Srivastav; V. S. Sharanagat; Ultrason. Sonochem., 2021, 70, 105325
S. A. Khan; R. Aslam; H. A. Makroo; J. Food Process Eng., 2019, 42
N. Jiménez-Moreno; I. Esparza; F. Bimbela; L. M. Gandía; C. Ancín-Azpilicueta; Crit. Rev. Environ. Sci. Technol., 2020, 50, 2061–2108
M. Alnajjar; S. K. Barik; C. Bestwick.; F. Campbell; M. Cruickshank; F. Farquharson; G. Holtrop; G. Horgan; P. Louis; K.-M. Moar; et al.; J. Funct. Foods, 2020, 64, 103597
D. Milenkovic; I. Krga; A. Dinel; C. Morand; S. Laye; N. Castanon; J. Funct. Foods, 2021, 85, 104609
G.-I. Hidalgo; M. Almajano; Antioxidants, 2017, 6, 7
A. M. Blejan; V. Nour; B. Păcularu–Burada; S. M. Popescu; Int. J. Food Prop., 2023, 26, 1579–1595
L. Cao; Y. Park; S. Lee; D.-O. Kim; Appl. Sci., 2021, 11, 1863
N. Pap; S. Beszedes; E. Pongracz; L. Myllykoski; M. Gabor; E. Gyimes; C. Hodur; R. L. Keiski; Food Bioprocess Technol., 2013, 6, 2666–2674
I. Piasecka; A. Wiktor; A. Górska; Appl. Sci., 2022, 12(3), 1734
M. Schulz; S. K. T. Seraglio; F. Della Betta; P. Nehring; A. C. Valese; H. Daguer; L. V. Gonzaga; A. C. O. Costa; R. Fett; Food. Res. Int., 2019, 122, 627–634
L. Kaume; L. R. Howard; L. Devareddy; J. Agric. Food. Chem., 2012, 60(23), 5716–5727
G. O. Isopencu; A. Stoica-Guzun; C. Busuioc; M. Stroescu; I. M. Deleanu; Carbohydr. Polym. Technol Appl., 2021, 2, 100057
Ž. Tarasevičienė; I. Čechovičiene; A. Paulauskienė; M. Gumbytė; A. Blinstrubienė; N. Burbulis; Foods, 2022, 11(15), 2180
M. Fidelis; C. de Moura; T. Kabbas Junior; N. Pap; P. Mattila; S. Mäkinen; P. Putnik; D. Bursać Kovačević; Y. Tian; B. Yang; et al.; Molecules, 2019, 24, 3854
C. Govers; M. Berkel Kasikci; A. A. van der Sluis; J. J. Mes; Nutr. Rev., 2018, 76, 29–46
D. A. Campos; R. Gómez-García; A. A. Vilas-Boas; A. R. Madureira; M. M. Pintado; Molecules, 2020, 25, 320
M. A. Chaouch; S. Benvenuti; Foods, 2020, 9, 1716
M. Lianza; L. Marincich; F. Antognoni; Antioxidants, 2022, 11, 2169
A. Patra; S. Abdullah; R. C. Pradhan; Bioresour. Bioprocess., 2022, 9, 14
G. C. V. Gamage, W. S. Choo; Heliyon, 2023, 9(3), e14426
Q. W. Zhang; L. G. Lin; W. C. Ye; Chin. Med., 2018, 13
X. L. Ran; M. Zhang; Y. Wang; B. Adhikari; Crit. Rev. Food., 2019, 59, 450–461
S. S. Nadar; P. Rao; V. K. Rathod; Food Res. Int., 2018, 108, 309–330
N. A. Sagar; S. Pareek; S. Sharma; E. M. Yahia; M. G. Lobo; Compr. Rev. Food Sci. Food Saf., 2018, 17, 512–531
S. J. Marathe; S. B. Jadhav; S. B. Bankar; K. K. Dubey; R.S. Singhal; Curr. Opin. Food Sci., 2019, 25, 62–72
F. Garavand; S. Rahaee; N. Vahedikia; S. M. Jafari; Trends Food Sci. Technol., 2019, 89, 26–44
R. C. Fierascu; E. Sieniawska; A. Ortan; I. Fierascu; J. Xiao; Front. Bioeng. Biotechnol., 2020, 8, 319
P. Gong; S. Wang; M. Liu; F. Chen; W. Yang; X. Chang; N. Liu; Y. Zhao; J. Wang; X. Chen; Carbohydr. Res., 2020, 494, 108037
F. Garavand; S. Rahaee; N. Vahedikia; S. M. Jafari; Trends Food Sci. Technol., 2019, 89, 26–44
O. Gligor; A. Mocan; C. Moldovan; M. Locatelli; G. Crisan; I. C. F. R. Ferreira; Trends Food Sci. Technol., 2019, 88, 302–315
H. S. Arruda; E. K. Silva; N. M. Peixoto Araujo; G. A. Pereira; G. M. Pastore; M. R. Marostica Junior; Molecules, 2021, 26, 2632
J. Li; Z. Chen; H. Shi; J. Yu; G. Huang; H. Huang; Ultrason. Sonochem., 2023, 93, 106295
K. Mkadmini; A. Jdey; C. Abdelly; H. Majdoub; R. Ksouri; Food Chem., 2015, 184, 80–89
P. Selvakumar; V. Karthik; P. S. Kumar; P. Asaithambi; S. Kavitha; P. Sivashanmugam; Chemosphere, 2021, 263, 128071
X.-Q. Chen; Z.-H. Li; Z.-J. Wang; L.-L. Liu; T.-T. Sun; J.-Z. Ma; Y. Zhang; Ind. Crops Prod., 2020, 150, 112420
K. Aaby; S. Grimmer; L. Holtung; Lwt Food Sci. Technol., 2013, 54, 257–264
V. Nour; F. Stampar; R. Veberic; J. Jakopic; Food Chem., 2013, 141, 961–966
J. E. Cacace; G. Mazza; J. Food Sci., 2003, 68, 240–248
D. R. Pompeu; E. M. Silva; H. Rogez; Bioresour. Technol., 2009, 100, 6076–6082
B. S. B. Bamba; J. Shi; C. C. Tranchant; S. J. Xue; C. F. Forney; L.-T. Lim; Molecules, 2018, 23, 1685
M. N. Safdar; T. Kausar; S. Jabbar; A. Mumtaz; K. Ahad; A. A. Saddozai; J. Food Drug Anal., 2017, 25, 488–500
I. J. Seabra; M. E. M.Braga; M. T. Batista; H. C. de Sousa; J. Supercrit. Fluids, 2010, 54, 145–152
N. Ćujić; K. Šavikin; T. Jankovic; D. Pljevljakušić; G. Zdunić; S. Ibric; Food Chem. 2016, 194, 135–142
B. Lapornik; M. Prošek; G. A. Wondra; J. Food Eng., 2005, 71, 214–222
T. Wang; N. Guo; S. X. Wang; P. Kou; C. J. Zhao; Y. J. Fu. Food Bioprod. Process., 2018, 108, 69–80
M. A. Varo; M. Jacotet-Navarro; M. P. Serratosa; J. Mérida; A. S. Fabiano-Tixier; A. Bily; F. Chemat; Waste Biomass Valorization, 2019, 10, 1945–1955
Q. Y. Zafra-Rojas; N. S. Cruz-Cansino; A. Q. Lira; C. A. Gómez-Aldapa; E. Alanís-García; A. Cervantes-Elizarrarás; N. Güemes-Vera; E. Ramírez-Moreno; Molecules, 2016, 21, 950
G. E. Pantelidis; M. Vasilakakis; G. A. Manganaris; G. Diamantidis; Food Chem., 2007, 102, 777–783
A. Konić-Ristić; K. Šavikin; G. Zdunić; T. Janković; Z. Juranic; N. Menković; I. Stanković; Food Chem., 2011, 125, 1412–1417
C.-R. Metzner Ungureanu; A. I. Lupitu; C. Moisa; A. Rivis; L. O. Copolovici; M.-A. Poiana; Sustainability, 2020, 12, 5681
J. J. Vulić; V. T. Tumbas; S. M. Savatović; S. Djilas; G. S. Cetković; J. M. Ćanadanović-Brunet; Acta Period. Technol., 2011, 42, 271–279
J. Lee; R. W. Durst; R. E. Wrolstad; J. AOAC Int., 2005, 88, 1269-1278
V. L. Singleton; R. Orthofer; R. M. Lamuela-Raventos; Methods Enzymol., 1999, 299, 152-178
I. Oliveira; A. Sousa; I. C. F. R. Ferreira; A. Bento; L. Estevinho; J. A. Pereira; Food Chem. Toxicol., 2008, 46, 2326-2331.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.