Recovery of Phenolic Compounds From Wild Bilberry, Blackcurrant and Blackberry Pomaces by Maceration and Ultrasound-assisted Extraction

Authors

DOI:

https://doi.org/10.24193/subbchem.2024.1.13

Keywords:

fruit pomaces, extraction, total phenolics content, total anthocyanins content, DPPH radical scavenging activity, correlations

Abstract

Wild bilberry, blackcurrant and blackberry fruit pomaces obtained after industrial juice processing were extracted in water, 1% citric acid, 40%, 60% and 80% (v/v) aqueous ethanol using two extraction methods: maceration and ultrasound-assisted extraction. The total phenolics content (TPC), total anthocyanins content (TAC), and DPPH radical scavenging activity (RSA) were quantified in the extracts. TPC was about 2.3-3.2 times higher in ethanolic extracts as compared with the water extracts. The extracts made in 60% aqueous ethanol showed the highest values of TPC, TAC and RSA irrespective of extraction method and pomace matrix while water and 1% aqueous citric acid were very little effective in recovering anthocyanins and phenolic compounds. Bilberry pomace extracts made in 60% ethanol using maceration presented the highest TAC (585.21 mg CGE/L), TPC (3381.82 mg GAE/L) and RSA (2.05 mmol Trolox/l). The results showed that bilberry, blackcurrant and blackberry fruit pomaces can be a valuable source of bioactive compounds to be used in food supplements and functional foods.

References

H. I. O. Basegmez; D. Povilaitis; V. Kitrytė; V. Kraujalienė; V. Šulniūtė; C. Alasalvar; P. R. Venskutonis; J. Supercrit Fluids, 2017, 124, 10–19

O. Golovinskaia; C.-K. Wang; Molecules, 2021, 26, 3904

N. P. Kelly; A. L. Kelly; J.A. O’Mahony; Trends Food Sci. Technol., 2019, 83, 248–258

K. Kumar; S. Srivastav; V. S. Sharanagat; Ultrason. Sonochem., 2021, 70, 105325

S. A. Khan; R. Aslam; H. A. Makroo; J. Food Process Eng., 2019, 42

N. Jiménez-Moreno; I. Esparza; F. Bimbela; L. M. Gandía; C. Ancín-Azpilicueta; Crit. Rev. Environ. Sci. Technol., 2020, 50, 2061–2108

M. Alnajjar; S. K. Barik; C. Bestwick.; F. Campbell; M. Cruickshank; F. Farquharson; G. Holtrop; G. Horgan; P. Louis; K.-M. Moar; et al.; J. Funct. Foods, 2020, 64, 103597

D. Milenkovic; I. Krga; A. Dinel; C. Morand; S. Laye; N. Castanon; J. Funct. Foods, 2021, 85, 104609

G.-I. Hidalgo; M. Almajano; Antioxidants, 2017, 6, 7

A. M. Blejan; V. Nour; B. Păcularu–Burada; S. M. Popescu; Int. J. Food Prop., 2023, 26, 1579–1595

L. Cao; Y. Park; S. Lee; D.-O. Kim; Appl. Sci., 2021, 11, 1863

N. Pap; S. Beszedes; E. Pongracz; L. Myllykoski; M. Gabor; E. Gyimes; C. Hodur; R. L. Keiski; Food Bioprocess Technol., 2013, 6, 2666–2674

I. Piasecka; A. Wiktor; A. Górska; Appl. Sci., 2022, 12(3), 1734

M. Schulz; S. K. T. Seraglio; F. Della Betta; P. Nehring; A. C. Valese; H. Daguer; L. V. Gonzaga; A. C. O. Costa; R. Fett; Food. Res. Int., 2019, 122, 627–634

L. Kaume; L. R. Howard; L. Devareddy; J. Agric. Food. Chem., 2012, 60(23), 5716–5727

G. O. Isopencu; A. Stoica-Guzun; C. Busuioc; M. Stroescu; I. M. Deleanu; Carbohydr. Polym. Technol Appl., 2021, 2, 100057

Ž. Tarasevičienė; I. Čechovičiene; A. Paulauskienė; M. Gumbytė; A. Blinstrubienė; N. Burbulis; Foods, 2022, 11(15), 2180

M. Fidelis; C. de Moura; T. Kabbas Junior; N. Pap; P. Mattila; S. Mäkinen; P. Putnik; D. Bursać Kovačević; Y. Tian; B. Yang; et al.; Molecules, 2019, 24, 3854

C. Govers; M. Berkel Kasikci; A. A. van der Sluis; J. J. Mes; Nutr. Rev., 2018, 76, 29–46

D. A. Campos; R. Gómez-García; A. A. Vilas-Boas; A. R. Madureira; M. M. Pintado; Molecules, 2020, 25, 320

M. A. Chaouch; S. Benvenuti; Foods, 2020, 9, 1716

M. Lianza; L. Marincich; F. Antognoni; Antioxidants, 2022, 11, 2169

A. Patra; S. Abdullah; R. C. Pradhan; Bioresour. Bioprocess., 2022, 9, 14

G. C. V. Gamage, W. S. Choo; Heliyon, 2023, 9(3), e14426

Q. W. Zhang; L. G. Lin; W. C. Ye; Chin. Med., 2018, 13

X. L. Ran; M. Zhang; Y. Wang; B. Adhikari; Crit. Rev. Food., 2019, 59, 450–461

S. S. Nadar; P. Rao; V. K. Rathod; Food Res. Int., 2018, 108, 309–330

N. A. Sagar; S. Pareek; S. Sharma; E. M. Yahia; M. G. Lobo; Compr. Rev. Food Sci. Food Saf., 2018, 17, 512–531

S. J. Marathe; S. B. Jadhav; S. B. Bankar; K. K. Dubey; R.S. Singhal; Curr. Opin. Food Sci., 2019, 25, 62–72

F. Garavand; S. Rahaee; N. Vahedikia; S. M. Jafari; Trends Food Sci. Technol., 2019, 89, 26–44

R. C. Fierascu; E. Sieniawska; A. Ortan; I. Fierascu; J. Xiao; Front. Bioeng. Biotechnol., 2020, 8, 319

P. Gong; S. Wang; M. Liu; F. Chen; W. Yang; X. Chang; N. Liu; Y. Zhao; J. Wang; X. Chen; Carbohydr. Res., 2020, 494, 108037

F. Garavand; S. Rahaee; N. Vahedikia; S. M. Jafari; Trends Food Sci. Technol., 2019, 89, 26–44

O. Gligor; A. Mocan; C. Moldovan; M. Locatelli; G. Crisan; I. C. F. R. Ferreira; Trends Food Sci. Technol., 2019, 88, 302–315

H. S. Arruda; E. K. Silva; N. M. Peixoto Araujo; G. A. Pereira; G. M. Pastore; M. R. Marostica Junior; Molecules, 2021, 26, 2632

J. Li; Z. Chen; H. Shi; J. Yu; G. Huang; H. Huang; Ultrason. Sonochem., 2023, 93, 106295

K. Mkadmini; A. Jdey; C. Abdelly; H. Majdoub; R. Ksouri; Food Chem., 2015, 184, 80–89

P. Selvakumar; V. Karthik; P. S. Kumar; P. Asaithambi; S. Kavitha; P. Sivashanmugam; Chemosphere, 2021, 263, 128071

X.-Q. Chen; Z.-H. Li; Z.-J. Wang; L.-L. Liu; T.-T. Sun; J.-Z. Ma; Y. Zhang; Ind. Crops Prod., 2020, 150, 112420

K. Aaby; S. Grimmer; L. Holtung; Lwt Food Sci. Technol., 2013, 54, 257–264

V. Nour; F. Stampar; R. Veberic; J. Jakopic; Food Chem., 2013, 141, 961–966

J. E. Cacace; G. Mazza; J. Food Sci., 2003, 68, 240–248

D. R. Pompeu; E. M. Silva; H. Rogez; Bioresour. Technol., 2009, 100, 6076–6082

B. S. B. Bamba; J. Shi; C. C. Tranchant; S. J. Xue; C. F. Forney; L.-T. Lim; Molecules, 2018, 23, 1685

M. N. Safdar; T. Kausar; S. Jabbar; A. Mumtaz; K. Ahad; A. A. Saddozai; J. Food Drug Anal., 2017, 25, 488–500

I. J. Seabra; M. E. M.Braga; M. T. Batista; H. C. de Sousa; J. Supercrit. Fluids, 2010, 54, 145–152

N. Ćujić; K. Šavikin; T. Jankovic; D. Pljevljakušić; G. Zdunić; S. Ibric; Food Chem. 2016, 194, 135–142

B. Lapornik; M. Prošek; G. A. Wondra; J. Food Eng., 2005, 71, 214–222

T. Wang; N. Guo; S. X. Wang; P. Kou; C. J. Zhao; Y. J. Fu. Food Bioprod. Process., 2018, 108, 69–80

M. A. Varo; M. Jacotet-Navarro; M. P. Serratosa; J. Mérida; A. S. Fabiano-Tixier; A. Bily; F. Chemat; Waste Biomass Valorization, 2019, 10, 1945–1955

Q. Y. Zafra-Rojas; N. S. Cruz-Cansino; A. Q. Lira; C. A. Gómez-Aldapa; E. Alanís-García; A. Cervantes-Elizarrarás; N. Güemes-Vera; E. Ramírez-Moreno; Molecules, 2016, 21, 950

G. E. Pantelidis; M. Vasilakakis; G. A. Manganaris; G. Diamantidis; Food Chem., 2007, 102, 777–783

A. Konić-Ristić; K. Šavikin; G. Zdunić; T. Janković; Z. Juranic; N. Menković; I. Stanković; Food Chem., 2011, 125, 1412–1417

C.-R. Metzner Ungureanu; A. I. Lupitu; C. Moisa; A. Rivis; L. O. Copolovici; M.-A. Poiana; Sustainability, 2020, 12, 5681

J. J. Vulić; V. T. Tumbas; S. M. Savatović; S. Djilas; G. S. Cetković; J. M. Ćanadanović-Brunet; Acta Period. Technol., 2011, 42, 271–279

J. Lee; R. W. Durst; R. E. Wrolstad; J. AOAC Int., 2005, 88, 1269-1278

V. L. Singleton; R. Orthofer; R. M. Lamuela-Raventos; Methods Enzymol., 1999, 299, 152-178

I. Oliveira; A. Sousa; I. C. F. R. Ferreira; A. Bento; L. Estevinho; J. A. Pereira; Food Chem. Toxicol., 2008, 46, 2326-2331.

Downloads

Published

2024-03-30

How to Cite

BLEJAN, A. M., NOUR, V., CORBU, A. R., & POPESCU, S. M. (2024). Recovery of Phenolic Compounds From Wild Bilberry, Blackcurrant and Blackberry Pomaces by Maceration and Ultrasound-assisted Extraction. Studia Universitatis Babeș-Bolyai Chemia, 69(1), 201–218. https://doi.org/10.24193/subbchem.2024.1.13

Issue

Section

Articles

Similar Articles

<< < 14 15 16 17 18 19 20 21 22 23 > >> 

You may also start an advanced similarity search for this article.