Comparative Phase Evolution, Morphological and Optical Analysis of Partially Stabilized Zirconia Ceramics

Authors

  • Claudia Andreea COJAN Department of Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, RO-400028, Cluj-Napoca, Romania
  • Réka BARABÁS Department of Chemistry and Chemical Engineering of Hungarian Line of Study, Babeş-Bolyai University, 11 Arany Janos Street, RO-400028, Cluj-Napoca, Romania
  • Marieta MUREȘAN-POP Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeş-Bolyai University, 42 Treboniu Laurian Street, RO-400271, Cluj-Napoca, Romania; INSPIRE Research Platform, Babeş-Bolyai University, 11 Arany Janos Street, RO-400028, Cluj-Napoca, Romania https://orcid.org/0000-0003-4460-9654
  • Liliana BIZO Department of Chemical Engineering, Babeş-Bolyai University, 11 Arany Janos Street, RO-400028, Cluj-Napoca, Romania; Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeş-Bolyai University, 42 Treboniu Laurian Street, RO-400271, Cluj-Napoca, Romania. *Corresponding author: liliana.bizo@ubbcluj.ro https://orcid.org/0000-0002-8775-8492

DOI:

https://doi.org/10.24193/subbchem.2024.2.01

Keywords:

partially stabilized zirconia, solid state reaction, structural properties, optical properties

Abstract

Partially stabilized zirconia (PSZ) ceramics are one of the most important materials used for different applications like thermal barrier coatings, refractories, oxygen-permeating membranes, and dental and bone implants. In this work, the structural, morphological, and optical properties of bulk Mg-PSZ, Ca-PSZ, and Ce-PSZ, prepared by solid state reaction at high temperature, were comparatively evaluated. Laser diffraction analyses revealed particles by thousands orders of magnitude larger compared to crystallite sizes determined from X-ray powder diffraction (XRPD), more evidenced in the case of Ca-PSZ. The structural analyses indicated the presence of both m- and t-ZrO2 phases, in different ratios, depending on the doping cation. The scanning electron microscopy (SEM) micrographs confirmed the homogenous distribution of the elements through mixed oxides. Further, optical properties evaluated in terms of ultraviolet–visible diffuse reflectance spectroscopy (UV-VIS DRS) revealed that the doped ZrO2 samples showed a smaller bandgap compared with pure ZrO2, which may be due to the incorporation of magnesia, calcia or ceria in the ZrO2 matrix. The maximum bandgap reduction of ZrO2 was observed on Ca-PSZ, having a value of 3.52 eV

References

A.K. Chitoria; A. Mir; M.A. Shah; Ceram. Int., 2023, 49, 32343-32358.

L. Bizo, M; Mureşan-Pop; R. Barabás; L. Barbu-Tudoran; A. Berar; Materials, 2023, 16, 2680.

D. Yusuf; E. Maryani; D.F. Mardhian; A.R. Noviyanti; Molecules, 2023, 28, 6054.

K. Wahyudi; E. Maryani; F. Arifiadi; A. Rostika; D. Yusuf; R.J. Manullang, Suyanti; R. Septawendar; Mater. Res. Express, 2021, 8, 045022.

J. Cho; B. Yang; C. Shen; H. Wang; X. Zhang; J. Eur. Ceram., 2023, 43, 3, 1098-1107.

J. Wang; D. Chu; H. Ma; S. Fang; Q. Chen; B. Liu; G. Ji; Z. Zhang; X. Jia; Ceram. Int., 2021, 47, 15180-15185.

L. Zhao; S. Yao; L. Kang; H.Y. Sun; Q. Huang; Sci. Adv. Mater., 2019, 11, 4, 483-488.

L. Hwanseok; J. Kanghee; L. Heesoo; J. Surf. Sci. Eng. 2021, 6, 38.

M.V. Peirani; E. Brandaleze; Sch. J. Eng. Technol. 2017, 5, 280-289.

Y.T. Sung; J.H. Son; S.S. Lee; D.S. Bae; Korean J. Mater. Res., 2014, 24, 53-59.

A.A. Ali; S.A. Shama; A.S. Amin; S.R. EL-Sayed; Mat. Sci. Eng. B, 2021, 269, 115167.

J. K. Mbae; Z.W. Muthui; Helyon, 2023, 9, e20998.

S.R. Gul; M. Khan; Y. Zeng; M. Lin; B. Wu; C.-T. Tsai; Materials, 2018, 19, 1238.

A.L. Patterson; Phys. Rev., 1939, 56, 978-982.

M.S. Khan; M.S. Islam; D.R. Bates; J. Mater. Chem., 1998, 8, 2299-2307.

G. Balakrishnan; R. Velavan; K.M. Batoo; E.H. Raslan; Results Phys., 2020, 16, 103013.

S. Sagadevan; J. Podder; I. Das; J. Mater. Sci.: Mater. Electron. 2016, 27, 5622–5627.

A. Berar; M. Mureșan-Pop; L. Barbu-Tudoran; R. Barabás; L. Bizo; Studia UBB Chemia, 2020, LXV, 2, 221-232.

P. Kubelka; F. Munk-Aussig; Physik, 1931, 12, 593-601.

L. Xie; J. Wang; Y. Hu; S. Zhu; Z. Zheng; S. Weng; P. Liu; RSC Adv., 2012, 2, 9881-9886.

H.M. Shinde; T.T. Bhosale; N.L. Gavade; S.B. Babar; K.M. Garadkar; J. Mater. Sc.i: Mater. Electron., 2018, 29, 14055-14064.

D. Sangalli; A. Lamperti; E. Cianci; R. Ciprian; M. Perego; A. Debernardi; Phys. Rev. B, 2013, 87, 085206.

N. Shuai; Z. Peng; X. Qian; L. Zhengcao; Z. Zhengjun; J. Phys. D: Appl. Phys., 2013, 46, 445004.

Y. Xie; Z. Ma; L. Liu; Y. Su; H. Zhao; Y. Liu; Z. Zhang; H. Duan; J. Li; E. Xie; Appl. Phys. Lett., 2010, 97, 141916.

G. Lucovsky; C.L. Hinkle; C.C. Fulton; N.A. Stoute; H. Seo; J. Lüning; Radiat. Phys. Chem. 2006, 75, 2097-2101.

E. Gaggero; P. Calza; E. Cerrato; M.C. Paganini; Catalysts, 2021, 11, 1520.

P. Li; I.-W. Chen; J.E. Penner-Hahn; J. Am. Ceram. Soc. 1994, 77, 1281-1288.

S.Y. Kwon; I.H. Jung; J. Eur. Ceram. Soc., 2017, 37, 1105-1116.

Downloads

Published

2024-06-30

How to Cite

COJAN, C. A., BARABÁS, R., MUREȘAN-POP, M., & BIZO, L. (2024). Comparative Phase Evolution, Morphological and Optical Analysis of Partially Stabilized Zirconia Ceramics. Studia Universitatis Babeș-Bolyai Chemia, 69(2), 7–17. https://doi.org/10.24193/subbchem.2024.2.01

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 20 21 22 23 24 25 26 27 28 29 > >> 

You may also start an advanced similarity search for this article.