Investigation of the Catalytic Activity of Hybrid Decavanadate Materials

Authors

  • Noemi DEAK Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. https://orcid.org/0000-0002-9401-0298
  • Meryem IDBOUMLIK Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Cluj-Napoca, Romania; Engineering Laboratory of Organometallic, Molecular Materials, and Environment (LIMOME), Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez, Morocco. https://orcid.org/0009-0002-8889-5875
  • Albert SORAN Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. https://orcid.org/0000-0002-7710-7776
  • Mohammed Abdulhakim LACHKAR Engineering Laboratory of Organometallic, Molecular Materials, and Environment (LIMOME), Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Atlas, Fez, Morocco.
  • Brahim EL BALI Independent Scientist, Oujda, Morocco.
  • Gabriela NEMES Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. *Corresponding author: gabriela.nemes@ubbcluj.ro https://orcid.org/0000-0003-4031-594X

DOI:

https://doi.org/10.24193/subbchem.2024.3.01

Keywords:

decavanadate derivatives, catalytic sulfoxidation, green and sustainable chemistry

Abstract

Three decavanadate (V10O28)6- containing compounds were used to test their catalytic activity in the sulfoxidation reaction of diphenyl sulfide using environmentally friendly conditions (low temperature, non-toxic solvent). The compounds of interest for our study, (NH4)2(H2en)2{V10O28}·4H2O, (H2en)3{V10O28}·6H2O and {Li2(H2O)10}(V10O28)(NH4)4, were evaluated, showing good activity in sulfoxidation reaction and leading to complete conversion of the sulfide even after three runs. The tetraammonium decaaqualithium decavanadate, with the formula {Li2(H2O)10}(V10O28)(NH4)4 was obtained through a modified literature method and its structure re-determined and investigated, giving similar results as previously described and confirming the structure of the used material.

References

S. Patai, Z. Rappoport, C. J. M. Stirling, The Chemistry of Sulphones and Sulphoxides, Wiley, New York, 1988.

M. Wang, X. Jiang, ACS Sustainable Chem. Eng., 2022, 10 (2), 671–677.

J. Waldman, T. L. Ng, P. Wang, E. P. Balskus, Chem. Rev., 2017, 117 (8), 5784–5863.

G. Yu, Q. Wang, S. Liu, X. Zhang, Q. Che, G. Zhang, T. Zhu, Q. Gu, D. Li, J. Nat. Prod., 2019, 82 (4), 998–1001.

G. Errante, G. La Motta, C. Lagana, V. Wittebolle, M.-É. Sarciron, R. Barret, Eur. J. Med. Chem., 2006, 41, 773–778.

J. Legros, J. R. Dehli, C. Bolm, Adv. Synth. Catal., 2005, 347, 19 – 31.

P. Devendar, G.-F. Yang, Top. Curr. Chem. (Z), 2017, 375, article no. 82.

I. Fernandez, N. Khiar, Chem. Rev., 2003, 103 (9), 3651–3706.

N. Wang, P. Saidhareddy, X. Jiang, Nat. Prod. Rep., 2020, 37, 246-275.

S. Otocka, M. Kwiatkowska, L. Madalinska, P. Kiełbasinski, Chem. Rev., 2017, 117 (5), 4147–4181.

G. Sipos, E.E. Drinkel, R. Dorta, Chem. Soc. Rev., 2015, 44, 3834-3860.

B. M. Trost, M. Rao, Angew. Chem. Int. Ed., 2015, 54, 5026 – 5043.

E. Wojaczynska, J. Wojaczynski, Chem. Rev., 2010, 110, 4303–4356.

N.-W. Liu , S. Liang , G. Manolikakes, Synthesis, 2016, 48 (13), 1939-1973.

S. Liang, K. Hofman, M. Friedrich, J. Keller, G. Manolikakes, ChemSusChem, 2021, 14, 4878–4902.

K.A. Stingl, S.B. Tsogoeva, Tetrahedron: Asymmetry, 2010, 21, 1055–1074.

J.-E. Bäckvall, Modern Oxidation Methods, Wiley-VCH, Weinheim, 2004.

K.P. Volcho, N.F. Salakhutdinov, A.G. Tolstikov, Russ. J. Org. Chem., 2003, 39 (11), 1537-1552.

M. Sutradhar, A.J. L. Pombeiro, J.A.L. da Silva, Vanadium Catalysis, The Royal Society of Chemistry, 2020.

R. R. Langeslay, D. M. Kaphan, C. L. Marshall, P. C. Stair, A.P. Sattelberger, M. Delferro, Chem. Rev., 2019, 119, 2128−2191.

Galindo, A. Pastor, F. Montilla, and M. del Mar Conejo, in Vanadium Catalysis, ed. M. Sutradhar, A. J. L. Pombeiro, and J. A. L. da Silva, The Royal Society of Chemistry, 2020, ch. 10, pp. 205-240.

R. R. Langeslay, D. M. Kaphan, C. L. Marshall, P. C. Stair, A. P. Sattelberger, M. Delferro, Chem. Rev., 2019, 119 (4), 2128–2191.

J.K. Li, C.P. Wei, Y.Y. Wang, M. Zhang, X.R. Lv, C.W. Hu, Inorg. Chem. Commun., 2018, 87, 5–7.

N. Deak, D.Madec, G. Nemes, Eur. J. Inorg. Chem, 2020, 2769-2790.

N. Deak, O. Thillaye du Boullay, I.-T. Moraru, S. Mallet-Ladeira, D.Madec, G. Nemes, Dalton Trans., 2019, 48, 2399-2406.

N. Deak, O. Thillaye du Boullay, S. Mallet-Ladeira, I.-T. Moraru, D. Madec, G. Nemes, Eur. J. Inorg. Chem, 2020, 3729-3737.

N. Deak, P. M. Petrar, S. Mallet‐Ladeira, L.Silaghi‐Dumitrescu, G.Nemeş, D. Madec, Chem. Eur. J., 2016, 22, 1349-1354.

N. Deak, I.-T. Moraru, N. Saffon-Merceron, D. Madec, G. Nemes, Eur. J. Inorg. Chem., 2017, 4214-4220.

N. Deak, R. Septelean, I.-T. Moraru, S. Mallet-Ladeira, D. Madec, G. Nemes, Studia UBB Chemia, 2018, LXIII (2), 105-115.

N. Deak, S. Mallet-Ladeira, L. Silaghi-Dumitrescu, D. Madec, G. Nemes, Studia UBB Chemia, 2017, LXII (4), Tom II, 411-420.

S.-S. Wang, G.-Y. Yang, Chem. Rev., 2015, 115, 4893−4962.

K.Y. Monakhov,W. Bensch, P. Kögerler, Chem. Soc. Rev., 2015, 44, 8443-8483.

T. Zhou, L.-L. Xie , Y. Niu, H.-R. Xiao, Y.-J. Li, Q. Han, X.-J. Qiu, X.-L. Yang, X.-Y. Wu, L.-M. Zhu, H. Pang, X.-Y. Cao, Rare Met., 2023, 42 (5), 1431–1445.

M. Ghosh, D. Sorsche, R. B. Ahmed, M. Anjass, ChemSusChem, 2023,16, article no. e2023006.

M. Anjass, G.A. Lowe, C. Streb, Angew. Chem. Int. Ed., 2021, 60, 7522–7532.

Q. Liang, Z., Peng, J., Liang, J., Song, Y., Jia, W., & Mao, Fibers. Polym., 2022, 23, 3380–3385.

M. Aureliano, C. André Ohlin, J. Inorg. Biochem., 2014, 137, 123–130.

M. Idboumlik, M. Kadiri, N. Hamdi, M. Driouch, A.F.I. Ngopoh, I. Lakkab, E-E. Bendeif, M. Sfaira, B. El Bali, M. Lachkar, A. Zarrouk, Mater. Chem. Phys., 2022, 287, article no. 126211.

M. Idboumlik, I. Lakkab, S. Erraouan, N. Hamdi, M. Lachkar, M. Dusek, V. Eigner, B. El Bali, J. Mol. Struct., 2024, 1312, article no. 138551.

. Misra, K. Kozma, C. Streb, M. Nyman, Angew. Chem. Int. Ed. 2020, 59, 596–612.

N. Tang, Y. Zhang, F. Lin, H. Lu, Z. Jiang, C. Li, Chem. Commun., 2012, 48, 11647-11649.

C. Li, N. Mizuno, K. Murata, K. Ishii, T. Suenobu, K. Yamaguchi, K. Suzuki, Green Chem., 2020, 22, 3896-3905.

J.-K. Li, C.-P. Wei, Y.-Y. Wang, M. Zhang, X.-R. Lv, C.-W. Hu, Inorg. Chem. Commun., 2018, 87, 5–7.

X. Huang, X. Gu, Y. Qi, Y. Zhang, G. Shen, B. Yang, W. Duan, S.Gong, Z. Xue, Y. Chen, Chin. J. Chem., 2021, 39, 2495-2503.

J. Routh, C.P. Pradeep, Inorg. Chem., 2023, 62, 13775−13792.

P. T. Anastas and J. C. Warner, Green Chemistry: Theory and Practice, Oxford University Press, 1998.

. J. Hunt, Ed., Element Recovery and Sustainability, RSC Publishing, 2013.

R. Ksiksi, M. Graia, A. Driss, T. Jouini, Acta Cryst.E, 2004, E60, i105–i107.

R. Ksiksi, Z. Abdelkafi-Koubaa, S. Mlayah-Bellalouna, D. Aissaoui, N. Marrakchi, N. Srairi-Abid, M. Faouzi Zid, M. Graia, J. Mol. Struct, 2021, 1229, article no. 129492

G.-B. Li, S.-H. Yang, M. Xiong, J.-H.Lin, Acta Cryst.C, 2004, C60, m612–m614.

J.L. Ferreira da Silva, M.F. Minas da Piedade, M.T. Duarte, Inorganica Chim. Acta, 2003, 356, 222-242.

A.-A. Mamdouh, A.B.M. Ibrahim, N. El-Houda A. Reyad, T.R. Elsayed, I. Cordeiro Santos, A. Paulo d, R. M. Mahfouz, J. Mol. Struct, 2022, 1253, article no. 132247.

M. Louati, R. Ksiksi, I. Elbini-Dhouib, S. Mlayah-Bellalouna, R. Doghri, N. Srairi-Abid, M.-F. Zid, J. Mol. Struct, 2021, 1242, article no. 130711.

D. Prat, A. Wells, J. Hayler, H. Sneddon, C.R. McElroy, S. Abou-Shehadad, P. J. Dunn, Green Chem., 2016,18, 288-296.

D. Prat, J. Hayler, A. Wells, Green Chem., 2014, 16, 4546-4551.

X. Wang, T. Zhang, Y. Li, J. Lin, H. Li, X.-L. Wang, Inorg. Chem., 2020, 59, 17583−17590.

G. M. Sheldrick, Acta Cryst., 2015, C71, 3-8.

BrukerSAINT 6.45, Bruker AXS Inc., Madison, Wisconsin, USA, 2001.

BrukerSADABS 2.10, Bruker AXS Inc., Madison, Wisconsin, USA, 2001.

BrukerAPEX3 2019.11-0, Bruker AXS Inc., Madison, Wisconsin, USA, 2019.

Brandenburg, K.; Putz, H. DIAMOND Version 3; Crystal Impact GbR: Bonn, Germany, 2005.

C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler, P. A. Wood, J. Appl. Cryst., 2020, 53, 226-235.

J.L. Ferreira da Silva, M.F. Minas da Piedade, M.T. Duarte, Inorganica Chim. Acta, 2003, 356, 222-242.

G.-B. Li, S.-H. Yang, M. Xiong, J.-H.Lin, Acta Cryst., 2004, C60, m612-m614.

M. Louati, R. Ksiksi, I. Elbini-Dhouib, S. Mlayah-Bellalouna, R. Doghri, N. Srairi-Abid, M.-F. Zid, J. Mol. Struct, 2021, 1242, article no. 130711.

I.D. Brown, D. Altermatt, Acta Cryst. B, 1985, B41, 244-247.

Downloads

Published

2024-09-30

How to Cite

DEAK, N., IDBOUMLIK, M., SORAN, A., LACHKAR, M. A., EL BALI, B., & NEMES, G. (2024). Investigation of the Catalytic Activity of Hybrid Decavanadate Materials. Studia Universitatis Babeș-Bolyai Chemia, 69(3), 7–23. https://doi.org/10.24193/subbchem.2024.3.01

Issue

Section

Articles

Similar Articles

<< < 57 58 59 60 61 62 

You may also start an advanced similarity search for this article.