CULTURAL SENSITIVITY IN AI TRANSLATION OF CHINESE LANGUAGE: EVALUATING AI’S CAPABILITY TO GRASP CULTURALLY RICH TEXTS

Authors

  • Iulia Elena CÎNDEA Lucian Blaga University of Sibiu, Faculty of Letters and Arts. E-mail: iulia.cindea@ulbsibiu.ro https://orcid.org/0000-0002-9391-2986
  • Jiong WANG Beijing Language and Culture University (BLCU). E-mail: wangjiong@blcu.edu.cn

DOI:

https://doi.org/10.24193/subbphilo.2025.4.11

Keywords:

AI translation tool, cultural sensitivity, hermeneutics, Chinese culturemes, post-editing, hybrid translation

Abstract

Cultural Sensitivity in AI Translation of Chinese Language: Evaluating AI’s Capability to Grasp Culturally Rich Texts. The widespread adoption of Artificial Intelligence (AI) in translation has fundamentally reshaped global communication by enhancing efficiency, cost-effectiveness, and accessibility. Despite these advancements, critical questions persist about AI’s capacity to navigate the inherent complexities of language, particularly regarding cultural sensitivity and contextual accuracy. These challenges are especially pronounced in Chinese, a language abundant in idiomatic phrases, literary allusions, and culturally embedded references, where mistranslations risk significant misunderstanding. This study examines the capabilities of leading AI translation tools in rendering culturally rich Chinese texts into Romanian and English. Drawing on a curated corpus of classical literature, contemporary literature and news articles, the research evaluates each tool’s performance in terms of accuracy, cultural sensitivity, contextual understanding, emotional tone, and overall fluency. Both qualitative and quantitative analyses reveal considerable variation among popular platforms. While high fluency and coherence are attainable, some persistent gaps remain in the handling of idiomatic expressions and nuanced cultural elements. These findings reaffirm the need for expert post-editing and a judicious, human-centered integration of AI into translation workflows.

REZUMAT. Sensibilitate culturală în traducerea asistată de IA a limbii chineze: evaluarea capacității de redare a textelor cu densitate culturală. Adoptarea pe scară largă a inteligenței artificiale (IA) în traducere a remodelat fundamental comunicarea globală, sporind eficiența, costurile și accesibilitatea. În pofida acestor progrese, persistă întrebări critice privind capacitatea IA de a gestiona complexitățile inerente ale limbajului, în special sensibilitatea culturală și acuratețea contextuală. Provocările sunt deosebit de pronunțate în chineză, limbă bogată în expresii idiomatice, aluzii literare și referințe puternic ancorate cultural, unde erorile de traducere pot genera neînțelegeri majore. Studiul de față examinează capacitățile principalelor instrumente de traducere bazate pe IA în redarea în română și engleză a textelor chineze bogate cultural. Pe baza unui corpus atent selectat, cuprinzând literatură clasică, literatură contemporană și articole de presă, cercetarea evaluează performanța fiecărui instrument în termeni de acuratețe, sensibilitate culturală, înțelegere contextuală, ton emoțional și fluență generală. Analizele calitative și cantitative evidențiază variații considerabile între platformele populare. Deși fluența și coerența ridicate sunt posibile, persistă anumite lacune în tratarea expresiilor idiomatice și a elementelor culturale nuanțate. Aceste constatări reafirmă necesitatea post-editării de către traducători profesioniști și a unei integrări cumpătate, centrate pe om, a IA în fluxurile de traducere.

Cuvinte-cheie: instrumente de traducere bazate pe IA; sensibilitate culturală; hermeneutică; cultureme chineze; post-editare; traducere hibridă

Article history: Received 13 June 2025; Revised 12 November 2025; Accepted 20 November 2025;
Available online 12 December 2025; Available print 30 December 2025


References

Ah Cheng. 2005. 《棋王》 [The Chess Master. Chinese-English Bilingual Edition]. The Chinese University of Hong Kong Press.

Bahdanau, D., K. Cho, and Y. Bengio. 2014. “Neural Machine Translation by Jointly Learning to Align and Translate.” arXiv preprint arXiv:1409.0473. https://arxiv.org/abs/1409.0473.

Bapna, A., et al. 2022. “Multilingual Mix: Example Interpolation Improves Multilingual Neural Machine Translation.” In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: 266–280.

Bender, E. M., and A. Koller. 2020. “Climbing towards NLU: On Meaning, Form, and Understanding in the Age of Data.” In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: 5185–5198.

Bender, E. M., et al. 2021. “On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?” In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency: 610–623.

Brown, T., et al. 2020. “Language Models Are Few-Shot Learners.” In Proceedings of the 34th Conference on Neural Information Processing Systems.

Cao Xueqin. 2025. “Hongloumeng 紅樓夢 (Dream of the Red Chamber).” Gushiwen. Accessed March 6, 2025.

https://m.gushiwen.cn/guwen/bookv_ca3ee0e7ebd7.aspx.

Castilho, S., et al. 2018. “Evaluating MT for Professional Use.” In Translation Quality Assessment: From Principles to Practice, edited by J. Moorkens, S. Castilho, F. Gaspari, and S. Doherty, Springer: 241–262.

Chowdhery, A., et al. 2022. “PaLM: Scaling Language Modeling with Pathways.” arXiv preprint arXiv:2204.02311. https://arxiv.org/abs/2204.02311.

Confucius. n.d. “Lunyu 論語 (The Analects), Book 2 ‘Wei zheng 為政,’ 2.1 and 2.4.” Chinese Text Project. Edited by Donald Sturgeon. Accessed March 2, 2025. https://ctext.org/lunyu-zhushu/wei-zheng/ens.

Floridi, L. 2013. The Ethics of Information. Oxford University Press.

Gadamer, H.-G. 1960. Truth and Method. Seabury Press. (Original work published 1960.)

Gentzler, E. 2014. “Translation Studies: Pre-Discipline, Discipline, Interdiscipline, and Post-Discipline.” International Journal of Society, Culture & Language 2 (2): 13–24.

Green, S., J. Heer, and C. D. Manning. 2014. “The Efficacy of Human Post-Editing for Language Translation.” In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems: 439–448.

Guerreiro, Nuno M., et al. 2023. “Hallucinations in Large Multilingual Translation Models.” Transactions of the Association for Computational Linguistics 11: 1500–1517.

Laozi. n.d. “Daodejing 道德經, chap. 1.” Chinese Text Project. Edited by Donald Sturgeon. Accessed March 4, 2025.

https://ctext.org/wiki.pl?if=gb&chapter=492483&remap=gb.

Lonergan, B. 1958. Insight: A Study of Human Understanding. Philosophical Library.

Marais, K., ed. 2022. Translation beyond Translation Studies. Bloomsbury.

Mo Yan. 2006. 《生死疲劳》 [Life and Death are Wearing Me Out. Chinese Edition]. Zhejiang Publishing House.

Nergaard, S., and S. Arduini. 2022. “Translation: A New Paradigm.” Translation. A Transdisciplinary Journal 1 (1): 8–17.

Rundle, C. 2014. “Theories and Methodologies of Translation History: The Value of an Interdisciplinary Approach.” The Translator 20 (1): 2–8.

Schleiermacher, F. 1998. Hermeneutics and Criticism and Other Writings. Edited and translated by A. Bowie. Cambridge University Press.

Searle, J. 1980. “Minds, Brains, and Programs.” Behavioral and Brain Sciences 3 (3): 417–424.

Son, J., and B. Kim. 2023. “Translation Performance from the User’s Perspective of Large Language Models and Neural Machine Translation Systems.” Information 14 (10): 574.

Strubell, E., A. Ganesh, and A. McCallum. 2019. “Energy and Policy Considerations for Deep Learning in NLP.” In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: 3645–3650.

Sunzi. n.d. “Sunzi bingfa 孫子兵法 (The Art of War), chap. 1 ‘Ji 計 (Laying Plans).’” Chinese Text Project. Edited by Donald Sturgeon. Accessed March 2, 2025. https://ctext.org/wiki.pl?if=gb&chapter=934017&remap=gb.

The Chairman’s Bao. 2021. “Beijing Opens Vaccination Applications to Foreigners.” The Chairman’s Bao. Accessed October 24, 2025.

https://www.thechairmansbao.com/beijing-opens-vaccination-applications-to-foreigners.

The Chairman’s Bao. 2023. “Study Finds Up to 27% of Jobs Could Be Lost to AI.” The Chairman’s Bao, July 13. Accessed October 24, 2025.

https://www.thechairmansbao.com/study-finds-up-to-27-of-jobs-could-be-lost-to-ai.

The Chairman’s Bao. 2024a. “200-Year-Old Hand-Painted Chinese Wallpaper Undergoes Restoration at Irish Home.” The Chairman’s Bao, May 16. Accessed October 24, 2025. https://www.thechairmansbao.com/200-year-old-hand-painted-chinese-wallpaper-undergoes-restoration-at-irish-home.

The Chairman’s Bao. 2024b. “Chinese Universities Discuss Dropping GPA Grading for Applicants.” The Chairman’s Bao. Accessed October 24, 2025. https://www.thechairmansbao.com/chinese-universities-discuss-dropping-gpa-grading-for-applicants.

The Chairman’s Bao. 2024c. “Elderly Woman Defies Expectations with Active Lifestyle.” The Chairman’s Bao, May 23. Accessed October 24, 2025. https://www.thechairmansbao.com/elderly-woman-defies-expectations-with-active-lifestyle.

Vaswani, A., et al. 2017. “Attention Is All You Need.” In Proceedings of the 31st Conference on Neural Information Processing Systems: 5998–6008.

Venuti, L. 1995. The Translator’s Invisibility: A History of Translation. Routledge.

Yu Hua. 2017. 《活着》 [To Live. Chinese Edition]. Beijing: Beijing October Literature and Art Publishing House.

Zaretskaya, A. 2018. “Machine Translation Post Editing at TransPerfect.” In Translation Quality Assessment: From Principles to Practice, edited by J. Moorkens, S. Castilho, F. Gaspari, and S. Doherty, Springer: 139–160.

Zheng, B., S. Tyulenev, and K. Marais. 2023. “Introduction: (Re-)Conceptualizing Translation in Translation Studies.” Translation Studies 16 (2): 167–177.

Downloads

Published

2025-12-12

How to Cite

CÎNDEA, I. E., & WANG, J. (2025). CULTURAL SENSITIVITY IN AI TRANSLATION OF CHINESE LANGUAGE: EVALUATING AI’S CAPABILITY TO GRASP CULTURALLY RICH TEXTS. Studia Universitatis Babeș-Bolyai Philologia, 70(4), 197–218. https://doi.org/10.24193/subbphilo.2025.4.11

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 > >> 

You may also start an advanced similarity search for this article.