Global Existence and Uniqueness for Viscoelastic Equations With Nonstandard Growth Conditions

Authors

DOI:

https://doi.org/10.24193/subbmath.2024.2.12

Keywords:

Viscoelastic equation, global existence, nonlinear dissipation, energy estimates

Abstract

This paper is devoted to the study of generalized viscoelastic nonlinear equations with Dirichlet-Neumann boundary conditions. We establish the local and uniqueness of weak solutions results in Sobolev spaces with variable exponents. Solutions are constructed as a limit of approximate solutions by a method independent of a compactness argument. We also discuss the global existence of solutions in the energy space.

Mathematics Subject Classification (2010): 74D10, 74G25, 74G30, 40E10, 35B45.

Received 25 November 2021; Accepted 02 March 2023

References

Abita, R., Semilinear hyperbolic boundary value problem associated to the nonlinear generalized viscoelastic equations, Acta Mathematica Vietnamica, 43(2018), 219-238.

Abita, R., Existence and asymptotic stability for the semilinear wave equation with variable-exponent nonlinearities, J. Math. Phys., 60(2019), 122701.

Abita, R., Bounds for below-up time in a nonlinear generalized heat equation, Appl Anal., (2020), 1871-1879.

Abita, R., Lower and upper bounds for the blow-up time to a viscoelastic Petrovsky wave equation with variable sources and memory term, Appl Anal., (2022), 1-29.

Andradea, D., Jorge Silvab, M.A., Mac, T.F., Exponential stability for a plate equation with p-Laplacian and memory terms, Math. Methods Appl. Sci., 35(2012), 417-426.

Ayang, Z., Global existence, asymptotic behavior and blow-up of solutions for a class of nonlinear wave equations with dissipative term, J. Differential Equations, 187(2003), 520-540.

Ayang, Z., Baoxia, J., Global attractor for a class of Kirchhoff models, J. Math. Phys.,

(2010), 29pp.

Cavalcanti, M.M., Oquendo, H.P., Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim., 42(2003), 1310-1324.

Dafermos, C.M., Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal.,

(1970), 297-208.

Dafermos, C.M., Nohel, J.A., Energy methods for nonlinear hyperbolic Volterra integrodifferential equations, Comm. Partial Differential Equations, 4(1979), 219-278.

Diening, L., Histo, P., Harjulehto, P., Rŭzicka, M., Lebesgue and Sobolev Spaces with Variable Exponents, vol. 2017, in: Springer Lecture Notes, Springer-Verlag, Berlin, 2011.

Diening, L., Rŭzicka, M., Calderon Zygmund operators on generalized Lebesgue spaces Lp(x)(Ω) and problems related to fluid dynamics, Preprint Mathematische Fakultät, Albert-Ludwigs-Universität Freiburg, 120(2002), 197-220.

Fan, X., Shen, J., Zhao, D., Sobolev embedding theorems for spaces Wk,p(x)(Ω), J. Math. Anal. Appl., 262(2001), 749-760.

Fu, Y., The existence of solutions for elliptic systems with nonuniform growth, Studia Math., 151(2002), 227-246.

Kovŕcik, O., Rákosnik, J., On spaces Lp(x)(Ω) and W1,p(x)(Ω), Czechoslovak Math. J., 41(1991), 592-618.

Lions, J.L., Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1966.

Ma, T.F., Soriano, J.A., On weak solutions for an evolution equation with exponential nonlinearities, Nonlinear Anal., 37(1999), 1029-1038.

Rivera JE, M., Asymptotic behaviour in linear viscoelasticity, Quart. Appl. Math.,

(1994), 628-648.

Rivera JE, M., Andrade, D., Exponential decay of non-linear wave equation with a viscoelastic boundary condition, Math. Methods Appl. Sci., 23(2000), 41-61.

Downloads

Published

2024-06-18

How to Cite

RAHMOUNE, A. (2024). Global Existence and Uniqueness for Viscoelastic Equations With Nonstandard Growth Conditions. Studia Universitatis Babeș-Bolyai Mathematica, 69(2), 425–443. https://doi.org/10.24193/subbmath.2024.2.12

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.