Optimal cubic Lagrange interpolation: Extremal node systems with minimal Lebesgue constant

Authors

  • Heinz-Joachim RACK Steubenstrasse 26 a, D-58097 Hagen, Germany e-mail: heinz-joachim.rack@drrack.com
  • Robert VAJDA University of Szeged Bolyai Institute 1, Aradi Vertanuk tere, H-6720 Szeged, Hungary e-mail: vajdar@math.u-szeged.hu https://orcid.org/0000-0002-2439-6949

Keywords:

Constant, cubic, extremal, interpolation, Lagrange interpolation, Lebesgue constant, minimal, node, node system, optimal, point, polynomial, symbolic computation.

Abstract

In the theory of interpolation of continuous functions by algebraic polynomials of degree at most n − 1 > 2, the search for explicit analytic expressions of extremal node systems which lead to the minimal Lebesgue constant is still an intriguing topic in mathematics today [33]. The first non-trivial case n − 1 = 2 (quadratic interpolation) has been completely resolved, even in two alternative fashions, see [25], [27]. In the present paper we proceed to completely resolve the cubic case (n − 1 = 3) of optimal polynomial Lagrange interpolation on the unit interval [−1, 1]. We will provide two explicit analytic expressions for the uncountable infinitely many extremal node systems x_1 < x_2 < x_3 < x_4 in [−1, 1] which all lead to the (known) minimal Lebesgue constant of cubic Lagrange interpolation on [−1, 1]. The descriptions of the extremal node systems (which need not be zero-symmetric) resemble the solutions for the quadratic case and incorporate two intrinsic constants expressed by radicals, of which one constant looks particularly intricate. Our results encompass earlier related work provided in [17], [23], [24], [29], [30] and are guided by symbolic computation. Mathematics Subject Classification (2010): 05C35, 33F10, 41A05, 41A44, 65D05, 68W30.

References

Angelos, J.A., Kaufman, E.H. Jr., Henry, M.S., Lenker, T.D., Optimal nodes for polynomial

interpolation, in: Approximation Theory VI, Vol. I, C.K. Chui, L.L. Schumaker, J.D. Ward (Eds.), (College Station, TX, 1989), 17-20, Academic Press, Boston, MA, 1989.

Babu˘ska, I., Strouboulis, Th., The finite element method and its reliability, Oxford University Press, Oxford, UK, 2001.

Bernstein, S., Sur la limitation des valeurs d’un polynome Pn(x) de degre n sur tout un segment par ses valeurs en (n + 1) points du segment, (in French), Izv. Akad. Nauk. SSSR, 7(1931), 1025-1050.

Brutman, L., Lebesgue functions for polynomial interpolation – a survey, Ann. Numer. Math., 4(1997), 111-127.

Chen, D., Generalization of polynomial interpolation at Chebyshev nodes, in: Approximation Theory XIII, M. Neamtu, L.L. Schumaker (Eds.), (San Antonio, TX, 2010), 17-35, Springer Proc. Math. 13, Springer, New York, 2012.

Cheney, E.W., Light, W.A., A course in approximation theory, AMS Publishing, Providence, RI, 2000.

Cheney, E.W., Xu, Y., A set of research problems in approximation theory, in: Topics in polynomials of one and several variables and their applications, Th. M. Rassias, H.M. Srivastava, A. Yanushauskas (Eds.), 109-123, World Sci. Publ., River Edge, NJ, 1993.

de Boor, C., Pinkus, A., Proof of the conjectures of Bernstein and Erdos concerning the optimal nodes for polynomial interpolation, J. Approx. Theory, 24(1978), 289-303.

de Villiers, J., Mathematics of approximation, Atlantis Press, Paris, 2012.

Dzyadyk, V.K., Approximation methods for solutions of differential and integral equations, VSP, Utrecht, NL, 1995.

Ehm, W., Beitrage zur Theorie optimaler Interpolationspunkte, (in German), Doctoral Dissertation, Universitat Munster, 1977.

Glaisher, J.W.L., Logarithms and computation, The Napier Tercentenary (Napier Tercentenary Memorial Volume), C.G. Knott (Ed.), Longmans, Green & Co., London, 1915.

Henry, M.S., Approximation by polynomials: Interpolation and optimal nodes, Am. Math. Mon., 91(1984), 497-499.

Kilgore, Th. A., A characterization of the Lagrange interpolating projection with minimal Tchebycheff norm, J. Approx. Theory, 24(1978), 273-288.

Lorentz, G.G., Jetter, K., Riemenschneider, S.D., Birkhoff interpolation, Cambridge University Press, Cambridge, UK, 1984.

Lubinsky, D.S., A taste of Erdos on interpolation, in: Paul Erdos and his mathematics, Vol. I, G. Hal´asz, L. Lov´asz, M. Simonovits, V.T. S´os (Eds.), (Budapest, 1999), 423-454, Bolyai Soc. Math. Stud. 11, J. Bolyai Math. Soc., Budapest and Springer, New York, 2002.

Luttmann, F.W., Rivlin, Th.J., Some numerical experiments in the theory of polynomial interpolation, IBM J. Res. Develop., 9(1965), 187-191.

Mastroianni G., Milovanovic, G.V, Interpolation processes. Basic theory and applications, Springer, Berlin, 2008.

Meijering, E., A chronology of interpolation: From ancient astronomy to modern signal and image processing, Proc. IEEE, 90(2002), 319-342.

Paszkowski, S., Zastosowania numeryczne wielomianow i szeregow Czebyszewa, (in Polish), PWN, Warsaw, 1975.

Phillips, G.M., Interpolation and approximation by polynomials, Springer, New York, 2003.

Powell, M.J.D., Approximation theory and methods, Cambridge University Press, Cambridge, UK, 1981.

Rack, H.-J., An example of optimal nodes for interpolation, Int. J. Math. Educ. Sci. Technol., 15(1984), 355-357.

Rack, H.-J., An example of optimal nodes for interpolation revisited, in: Advances in applied mathematics and approximation theory, Contributions from AMAT 2012, G. A. Anastassiou and O. Duman (Eds.), Springer Proceedings in Mathematics and Statistics 41, 117-120, Springer, New York, 2013.

Rack, H.-J., Vajda, R., On optimal quadratic Lagrange interpolation: Extremal node systems with minimal Lebesgue constant via symbolic computation, Serdica J. Comput., 8(2014), 71-96.

Rivlin, Th. J., An introduction to the approximation of functions, Corrected republication of the 1969 original by Blaisdell Publishing Company, Dover Publications, New York, 1981.

Schurer, F., A remark on extremal sets in the theory of polynomial interpolation, Stud. Sci. Math. Hung., 9(1974), 77-79.

Szabados J., Vertesi, P., Interpolation of functions, World Scientific, Singapore, 1990.

Tureckii, A.H., On certain extremal problems in the theory of interpolation, (in Russian), in: Studies of contemporary problems in constructive function theory, (Proceedings Second All-Union Conference, 1962), I.I. Ibragimov (Ed.), 220-232, Izdat. Akad. Nauk. Azerbaidzan SSR (Baku), 1965.

Tureckii, A.H., The theory of interpolation in problem form, Vol I., (in Russian), Izdat. Vyseisaja Skola, Minsk, 1968.

Tureckii, A.H., The theory of interpolation in problem form, Vol II, (in Russian), Izdat. Vyseisaja Skola, Minsk, 1977.

Vajda, R., Lebesgue constants and optimal node systems via symbolic computations (short paper), in: L. Kovacs, T. Kutsia (eds.), Fifth International Symposium on Symbolic Computation (SCSS 2013), RISC-Linz Report Series No. 13-06, 125-125, 2013.

Wikipedia (the free encyclopedia), Lebesgue constant(interpolation), Available online at http://en.wikipedia.org/wiki/Lebesgue constant (interpolation)

Wikipedia (the free encyclopedia), Henri Lebesgue, Available online at http://en.wikipedia.org/wiki/Henri Lebesgue

Downloads

Published

2015-06-30

How to Cite

RACK, H.-J., & VAJDA, R. (2015). Optimal cubic Lagrange interpolation: Extremal node systems with minimal Lebesgue constant. Studia Universitatis Babeș-Bolyai Mathematica, 60(2), 151–171. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/subbmathematica/article/view/5710

Issue

Section

Articles

Similar Articles

<< < 13 14 15 16 17 18 19 20 > >> 

You may also start an advanced similarity search for this article.