Quantitative uniform approximation by generalized discrete singular operators

Authors

  • George A. ANASTASSIOU Department of Mathematical Sciences The University of Memphis Memphis, TN 38152, U.S.A. e-mail: ganastss@memphis.edu https://orcid.org/0000-0002-3781-9824
  • Merve KESTER Department of Mathematical Sciences The University of Memphis Memphis, TN 38152, U.S.A. e-mail: mkester@memphis.edu

Keywords:

Discrete singular operator, modulus of smoothness, uniform convergence.

Abstract

Here we study the approximation properties with rates of generalized discrete versions of Picard, Gauss-Weierstrass, and Poisson-Cauchy singular op- erators. We treat both the unitary and non-unitary cases of the operators above. We establish quantitatively the pointwise and uniform convergences of these operators to the unit operator by involving the uniform higher modulus of smoothness of a uniformly continuous function.

Mathematics Subject Classification (2010): 26A15, 26D15, 41A17, 41A25.

References

Anastassiou, G.A., Intelligent Mathematics: Computational Analysis, Springer, Heidelberg, New York, USA, 2011.

Anastassiou, G.A., Approximation by Discrete Singular Operators, Cubo, 15(2013), no. 1, 97-112.

Anastassiou, G.A., Mezei, R.A., Approximation by Singular Integrals, Cambridge Scientific Publishers, Cambrige, UK, 2012.

Favard, J., Sur les multiplicateurs d'interpolation, J. Math. Pures Appl., IX, 23(1944), 219-247.

Smarandache, F., A triple inequality with series and improper integrals, arxiv.org/ftp/mat/papers/0605/0605027.pdf, 2006.

Downloads

Published

2015-03-30

How to Cite

ANASTASSIOU, G. A., & KESTER, M. (2015). Quantitative uniform approximation by generalized discrete singular operators. Studia Universitatis Babeș-Bolyai Mathematica, 60(1), 39–60. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/subbmathematica/article/view/5658

Issue

Section

Articles

Similar Articles

<< < 14 15 16 17 18 19 20 21 22 23 > >> 

You may also start an advanced similarity search for this article.