Inequalities of Hermite-Hadamard type for AH-convex functions

Dedicated to Professor Ioan A. Rus on the occasion of his 80th anniversary

Authors

  • Sever S. DRAGOMIR Mathematics, College of Engineering & Science Victoria University, PO Box 14428 Melbourne City, MC 8001, Australia School of Computational & Applied Mathematics University of the Witwatersrand Johannesburg 2050, South Africa e-mail: sever.dragomir@vu.edu.au https://orcid.org/0000-0003-2902-6805

Keywords:

Convex functions, integral inequalities, AH-Convex functions.

Abstract

Some inequalities of Hermite-Hadamard type for AH-convex functions defined on convex subsets in real or complex linear spaces are given. The case for functions of one real variable is explored in depth. Applications for special means are provided as well.

Mathematics Subject Classification (2010): 26D15, 25D10.

References

Alomari, M., Darus, M., The Hadamard's inequality for s-convex function, Int. J. Math. Anal., (Russian), 2(2008), no. 13-16, 639-646.

Alomari, M., Darus, M., Hadamard-type inequalities for s-convex functions, Int. Math. Forum, 3(2008), no. 37-40, 1965-1975.

Anastassiou, G.A., Univariate Ostrowski inequalities, revisited, Monatsh. Math., 135(2002), no. 3, 175-189.

Barnett, N.S., Cerone, P., Dragomir, S.S., Pinheiro, M.R., Sofo, A., Ostrowski type inequalities

for functions whose modulus of the derivatives are convex and applications, Inequality Theory and Applications, vol. 2 (Chinju/Masan, 2001), 19-32, Nova Sci. Publ., Hauppauge, NY, 2003. Preprint: RGMIA Res. Rep. Coll., 5(2002), no. 2, Art. 1 [Online http://rgmia.org/papers/v5n2/Paperwapp2q.pdf].

Beckenbach, E.F., Convex functions, Bull. Amer. Math. Soc., 54(1948), 439-460.

Bombardelli, M., Varo_sanec, S., Properties of h-convex functions related to the Hermite-Hadamard-Fejer inequalities, Comput. Math. Appl., 58(2009), no. 9, 1869-1877.

Breckner, W.W., Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Raumen, (German), Publ. Inst. Math., Beograd, N.S., 23(37)(1978), 13-20.

Breckner, W.W., Orb_an, G., Continuity properties of rationally s-convex mappings with values in an ordered topological linear space, Babes-Bolyai Univ., Fac. of Math., Cluj-Napoca, 1978, viii+92 pp.

Cerone, P., Dragomir, S.S., Midpoint-type rules from an inequalities point of view, Ed. G. A. Anastassiou, Handbook of Analytic-Computational Methods in Applied Mathematics, CRC Press, New York, 135-200.

Cerone, P., Dragomir, S.S., New bounds for the three-point rule involving the Riemann-Stieltjes integrals, in: Advances in Statistics Combinatorics and Related Areas, C. Gulati, et al.(Eds.), World Science Publishing, 2002, 53-62.

Cerone, P., Dragomir, S.S., Roumeliotis, J., Some Ostrowski type inequalities for n-time differentiable mappings and applications, Demonstratio Math., 32(1999), no. 2, 697-712.

Cristescu, G., Hadamard type inequalities for convolution of h-convex functions, Ann.

Tiberiu Popoviciu Semin. Funct. Eq. Approx. Convexity, 8(2010), 3-11.

Dragomir, S.S., Ostrowski's inequality for monotonous mappings and applications, J. KSIAM, 3(1999), no. 1, 127-135.

Dragomir, S.S., The Ostrowski's integral inequality for Lipschitzian mappings and applications, Comp. Math. Appl., 38(1999), 33-37.

Dragomir, S.S., On the Ostrowski's inequality for Riemann-Stieltjes integral, Korean J. Appl. Math., 7(2000), 477-485.

Dragomir, S.S., On the Ostrowski's inequality for mappings of bounded variation and applications, Math. Ineq. Appl., 4(2001), no. 1, 33-40.

Dragomir, S.S., On the Ostrowski inequality for Riemann-Stieltjes integral R b a f (t) du (t)

where f is of Holder type and u is of bounded variation and applications, J. KSIAM, 5(2001), no. 1, 35-45.

Dragomir, S.S., Ostrowski type inequalities for isotonic linear functionals, J. Inequal. Pure Appl. Math., 3(2002), no. 5, Art. 68.

Dragomir, S.S., An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math., 3(2002), no. 2, Article 31, 8 pp.

Dragomir, S.S., An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math., 3(2002), No. 2, Article 31.

Dragomir, S.S., An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math., 3(2002), no. 3, Article 35.

Dragomir, S.S., An Ostrowski like inequality for convex functions and applications, Revista Math. Complutense, 16(2003), no. 2, 373-382.

Dragomir, S.S., Operator Inequalities of Ostrowski and Trapezoidal Type, Springer Briefs in Mathematics, Springer, New York, 2012. x+112 pp.

Dragomir, S.S., Cerone, P., Roumeliotis, J., Wang, S., A weighted version of Ostrowski inequality for mappings of Holder type and applications in numerical analysis, Bull. Math. Soc. Sci. Math. Romania, 42(90)(1999), no. 4, 301-314.

Dragomir, S.S., Fitzpatrick, S., The Hadamard inequalities for s-convex functions in the second sense, Demonstratio Math., 32(1999), no. 4, 687-696.

Dragomir, S.S., Fitzpatrick, S., The Jensen inequality for s-Breckner convex functions in linear spaces, Demonstratio Math., 33(2000), no. 1, 43-49.

Dragomir, S.S., Mond, B., On Hadamard's inequality for a class of functions of Godunova and Levin, Indian J. Math., 39(1997), no. 1, 1-9.

Dragomir, S.S., Pearce, C.E.M., On Jensen's inequality for a class of functions of Godunova and Levin, Period. Math. Hungar., 33(1996), no. 2, 93-100.

Dragomir, S.S., Pearce, C.E.M., Quasi-convex functions and Hadamard's inequality, Bull. Austral. Math. Soc., 57(1998), 377-385.

Dragomir, S.S., Pecaric, J., Persson, L., Some inequalities of Hadamard type, Soochow J. Math., 21(1995), no. 3, 335-341.

Dragomir, S.S., Rassias, Th.M. (Eds.), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publisher, 2002.

Dragomir, S.S., Wang, S., A new inequality of Ostrowski's type in L1norm and applications to some special means and to some numerical quadrature rules, Tamkang J. of Math., 28(1997), 239-244.

Dragomir, S.S., Wang, S., Applications of Ostrowski's inequality to the estimation of error bounds for some special means and some numerical quadrature rules, Appl. Math.Lett., 11(1998), 105-109.

Dragomir, S.S., Wang, S., A new inequality of Ostrowski's type in Lpnorm and applications to some special means and to some numerical quadrature rules, Indian J. of Math., 40(1998), no. 3, 245-304.

El Farissi, A., Simple proof and refeinment of Hermite-Hadamard inequality, J. Math. Ineq., 4(2010), no. 3, 365-369.

Godunova, E.K., Levin, V.I., Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions, (Russian) Numerical mathematics and mathematical physics, Moskov. Gos. Ped. Inst., Moscow, 166(1985), 138-142.

Hudzik, H., Maligranda, L., Some remarks on s-convex functions, Aequationes Math., 48(1994), no. 1, 100-111.

Kikianty, E., Dragomir, S.S., Hermite-Hadamard's inequality and the p-HH-norm on the Cartesian product of two copies of a normed space, Math. Inequal. Appl. (in press).

Kirmaci, U.S., Klaricic Bakula, M., Ozdemir, M.E., Pecari_c, J., Hadamard-type inequalities for s-convex functions, Appl. Math. Comput., 193(2007), no. 1, 26-35.

Latif, M.A., On some inequalities for h-convex functions Int. J. Math. Anal., (Russian), 4(2010), no. 29-32, 1473-1482.

Mitrinovic, D.S., Lackovic, I.B., Hermite and convexity, Aequationes Math., 28(1985), 229-232.

Mitrinovic, D.S., Pecaric, J.E., Note on a class of functions of Godunova and Levin, C. R. Math. Rep. Acad. Sci. Canada, 12(1990), no. 1, 33-36.

Pearce, C.E.M., Rubinov, A.M., P-functions, quasi-convex functions, and Hadamard type inequalities, J. Math. Anal. Appl., 240(1999), no. 1, 92-104.

Pecaric, J.E., Dragomir, S.S., On an inequality of Godunova-Levin and some refinements of Jensen integral inequality, Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca, 1989), 263-268, Preprint, 89-6, Babes-Bolyai Univ., Cluj-Napoca, 1989.

Pecaric, J., Dragomir, S.S., A generalization of Hadamard's inequality for isotonic linear functionals, Radovi Mat., Sarajevo, 7(1991), 103-107.

Radulescu, M., Radulescu, S., Alexandrescu, P., On the Godunova-Levin-Schur class of functions, Math. Inequal. Appl., 12(2009), no. 4, 853-862.

Sarikaya, M.Z., Saglam, A., Yildirim, H., On some Hadamard-type inequalities for hconvex functions, J. Math. Inequal., 2(2008), no. 3, 335-341.

Set, E., Ozdemir, M.E., Sarkaya, M.Z., New inequalities of Ostrowski's type for s-convex functions in the second sense with applications, Facta Univ. Ser. Math. Inform., 27(2012),

no. 1, 67-82.

Sarikaya, M.Z., Set, E., Ozdemir, M.E., On some new inequalities of Hadamard type involving h-convex functions, Acta Math. Univ. Comenian., 79(2010), no. 2, 265-272.

Tunc, M., Ostrowski-type inequalities via h-convex functions with applications to special means, J. Inequal. Appl., 2013, 2013:326.

Varosanec, S., On h-convexity, J. Math. Anal. Appl., 326(2007), no. 1, 303-311.

Downloads

Published

2016-12-30

How to Cite

DRAGOMIR, S. S. (2016). Inequalities of Hermite-Hadamard type for AH-convex functions: Dedicated to Professor Ioan A. Rus on the occasion of his 80th anniversary. Studia Universitatis Babeș-Bolyai Mathematica, 61(4), 489–502. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/subbmathematica/article/view/5640

Issue

Section

Articles

Similar Articles

<< < 8 9 10 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.