Some variants of contraction principle, generalizations and applications

Dedicated to Professor Gheorghe Coman on the occasion of his 80th anniversary

Authors

  • Ioan A. RUS Babes-Bolyai University Faculty of Mathematics and Computer Sciences 1, Kogalniceanu Street, 400084 Cluj-Napoca, Romania e-mail: iarus@math.ubbcluj.ro

Keywords:

Metric space, generalized metric space, contraction, quasicontraction, generalized contraction, Bessaga operator, Janos operator, Picard operator, - Picard operator, well-posedness of fixed point problem, Ostrowski property, data dependence, Ulam stability, iterative algorithm, iterative algorithm stability, stability under operator perturbation, functional differential equation, functional integral equation.

Abstract

In this paper we present the following variant of contraction principle: \noindent\underline{Saturated principle of contraction}. Let $(X,d)$ be a complete metric space and $f:X\to X$ be an $l$-contraction. Then we have: \begin{itemize} \item [$(i)$] $F_{f^n}=\{x^*\}$, $\forall\ n\in\mathbb{N}^*$. \item [$(ii)$] $f^n(x)\to x^*$ as $n\to\infty$, $\forall\ x\in X$. \item [$(iii)$] $d(x,x^*)\leq\psi(d(x,f(x)))$, $\forall\ x\in X$ where $\psi(t)=\frac{t}{1-l}$, $t\geq 0$. \item [$(iv)$] $y_n\in X$, $d(y_n,f(y_n))\to 0$ as $n\to\infty$ $\Rightarrow $ $y_n\to x^*$ as $n\to\infty$. \item [$(v)$] $y_n\in X$, $d(y_{n+1},f(y_n))\to 0$ as $n\to\infty$ $\Rightarrow $ $y_n\to x^*$ as $n\to\infty$. \item [$(vi)$] If $Y\subset X$ is a nonempty bounded and closed subset with $f(Y)\subset Y$, then $x^*\in Y$ and $\displaystyle\bigcap_{n\in\mathbb{N}}f^n(Y)=\{x^*\}$. \end{itemize} The basic problem is: which other metric conditions imply the conclusions of this variant ? We give some answers for this problem. Some applications and open problems are also presented.

Mathematics Subject Classification (2010): 47H10, 54H25, 65J15, 34Kxx, 45Gxx, 45N05.

References

Andras, S., Fiber Picard operators and convex contractions, Fixed Point Theory, 4(2003), no. 2, 121-129.

Arvanitakis, A.D., A proof of the generalized Banach contraction conjecture, Proc. Amer. Math. Soc., 131(2003), no. 12, 3647-3656.

Bacotiu, C., Picard Operators and Applications, Ph.D. Dissertation, Babes-Bolyai Univ., Cluj-Napoca, 2004.

Berinde, V., Iterative Approximation of Fixed Points, Springer, 2007.

Berinde, V., Choban, M., Generalized distance and their associate metrics. Impact on fixed point theory, Creative Math. Infor., 22(2013), no. 1, 23-32.

Berinde, V., Maruster, St., Rus, I.A., Some variants of contraction principle for nonself operators, generalizations and applications, (to appear).

Berinde, V., Petru_sel, A., Rus, I.A., S_erban, M.A., The retraction-displacement condition in the theory of _xed point equation with a convergent iterative algorithm. In: T.M. Rassias and V. Gupta (eds.), Mathematical Analysis, Approximation Theory and Their Applications, Springer, 2016, 75-106.

Budescu, A., Semilinear operator equations and systems with potential-type nonlinearities, Sudia Univ. Babes-Bolyai Math., 59(2014), no. 2, 199-212.

Buica, A., Principii de concidenta si aplicatii, Presa Universitara Clujeana, Cluj-Napoca, 2011.

Chen, Y.-Z., Inhomogeneous iterates of contraction mappings and nonlinear ergodic theorems, Nonlinear Anal., 39(2000), 1-10.

Chidume, C.E., Maruster, St., Iterative methods for the computation of fixed point of demicontractive mappings, J. Comput. Appl. Math., 234(2010), 861-882.

Chis-Novac, A., Precup, R., Rus, I.A., Data dependence of fixed point for nonself generalized contractions, Fixed Point Theory, 10(2009), 73-87.

Chu, S.C., Diaz, J.B., Remarks on a generalization of Banach principle of contraction mappings, J. Math. Anal. Appl., 11(1965), 440-446.

Egri, E., On First and Second Order Iterative Functional Differential Equations and Systems, Ph.D. Dissertation, Babes-Bolyai Univ., Cluj-Napoca, 2007.

Filip, A.-D., Fixed Point Theory in Kasahara Spaces, Casa Cartii de Stiinta, Cluj-Napoca, 2015.

Goebel, K., Concise Course on Fixed Point Theorems, Yokohama Publ., 2002.

Granas, A., Dugundji, J., Fixed Point Theory, Springer, 2003.

Guseman, L.F., Fixed point theorems for mappings with a contractive iterate at a point, Proc. Amer. Math. Soc., 26(1970), 615-618.

Ilea, V.A., Ecuatii diferentiale de ordinul intai cu modicarea mixta a argumentului, Presa Universitara Clujeana, Cluj-Napoca, 2006.

Istratescu, V.I., Fixed Point Theory, Reidel Publ. Co., 1981.

Jachymski, J., The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136(2008), 1359-1373.

Jachymski, J., Klima, J., Around Perov's fixed point theorem for mapping on generalized metric spaces, Fixed Point Theory, 17(2016), no. 2, 367-380.

Jachymski, J., Stein, J.D., A minimum condition and some related fixed-point theorems, J. Australian Math. Soc. (Series A), 66(1999), 224-243.

Kirk, W.A., Shahzad, N., Fixed Point Theory in Distance Spaces, Springer, 2014.

Kirk, W.A., Sims, B. (eds.), Handbook of Metric Fixed Point Theory, Kluwer, 2001.

Krasnoselskii, M.A., Zabrejko, P., Geometrical Methods in Nonlinear Analysis, Springer, 1984.

Lungu, N., Qualitative Problems in the Theory of Hyperbolic Di_erential Equations, Digital Data Cluj, Cluj-Napoca, 2006.

Maruster, St., Rus, I.A., Kannan contractions and strongly demicontractive mappings, Creative Math. Infor., 24(2015), no. 2, 171-180.

Muresan, A.S., The theory of some asymptotic fixed point theorems, Carpathian J. Math., 30(2014), 361-368.

Muresan, V., Functional Integral Equations, Mediamira, Cluj-Napoca, 2003.

Olaru, I.M., A study of a nonlinear integral equation via weakly Picard operators, Fixed Point Theory, 16(2015), no. 1, 163-174.

Ortega, J.M., Rheinboldt, W.C., Iterative Solutions of Nonlinear Equations in Several Variables, Acad. Press, New York, 1970.

Otrocol, D., Sisteme Lotka-Volterra cu argument intarziat, Presa Universitara Clujeana, Cluj-Napoca, 2007.

Pacurar, M., Iterative Methods for Fixed Point Approximation, Risoprint, Cluj-Napoca, 2009.

Pacurar, M., Rus, I.A., Fixed point theory for cyclic '-contractions, Nonlinear Anal., 72(2010), 1181-1187.

Palais R.S., A simple proof of the Banach contraction principle, J. Fixed Point Theory Appl., 2(2007), 221-223.

Petrusel, A., Some variants of contraction principle for multivalued operators, generalizations and applications, (to appear).

Petrusel, A., Rus, I.A., Fixed point theorems in ordered L-spaces, Proc. Amer. Math.Soc., 134(2006), no. 2, 411-418.

Petrusel, A., Rus, I.A., A class of functional-integral equations with applications to a bilocal problem. In: Th. M. Rassias and L. Toth (eds.), Topics in Mathematical Analysis and Applications, Springer, 2014, 609-634.

Petrusel, A., Rus, I.A., Serban, M.A., The role of equivalent metrics in fixed point theory, Topological Methods in Nonlinear Anal., 41(2013), no. 1, 85-112.

Petrusel, A., Rus, I.A., Serban, M.A., Basic problems of the metric fixed point theory and the relevance of a metric fixed point theorem for a multivalued operator, J. Nonlinear Convex Anal., 15(2014), no. 3, 493-513.

Petrusel, A., Rus, I.A., Serban, M.A., Some variants of contraction principle for nonself multivalued operators, generalizations and applications, (to appear).

Precup, R., A fixed point theorem of Maia type in syntopogenous spaces, Sem. Fixed Point Theory, Preprint 3(1988), Babes-Bolyai Univ., Cluj-Napoca, 49-70.

Precup, R., The role of the matrices that are convergent to zero in the study of semilinear operator systems, Math. Computer Modeling, 49(2009), 703-708.

Precup, R., Nash-type equilibria and periodic solutions to nonvariational systems, Adv. Nonlinear Anal., Doi:10.1515/anona-2014-0006.

Proinov, P.D., A unied theory of cone metric spaces and its applications to the fixed point theory, Fixed Point Theory Appl., 2013; 2013:103.

Reich, S., Zaslavski, A.J., A fixed point theorem for Matkowski contractions, Fixed Point Theory, 8(2007), no. 2, 303-307.

Rhoades, B.E., A comparison of various definitions of contractive mappings, Trans. Amer. Math. Soc., 226(1977), 257-290.

Rus, I.A., Metrical Fixed Point Theorems, Babes-Bolyai Univ., Cluj-Napoca, 1979.

Rus, I.A., Maps with '-contraction iterates, Stud. Univ. Babes-Bolyai Math., 25(1980), no. 4, 47-51.

Rus, I.A., Basic problem for Maia's theorem, Sem. on Fixed Point Theory, Preprint 3(1981), Babes-Bolyai Univ., Cluj-Napoca, 112-115.

Rus, I.A., Generalized Contractions and Applications, Cluj Univ. Press, Cluj-Napoca, 2001.

Rus, I.A., Picard operators and applications, Sci. Math. Jpn., 58(2003), 191-219.

Rus, I.A., Picard operators and well-posedness of fixed point problems, Stud. Univ. Babes-Bolyai Math., 52(2007), no. 3, 147-156.

Rus, I.A., Fixed point theory in partial metric spaces, Analele Univ. de Vest Timisoara, Mat.-Infor., 46(2008), 149-160.

Rus, I.A., The theory of a metrical fixed point theorem: theoretical and applicative relevance, Fixed Point Theory, 9(2008), no. 2, 541-559.

Rus, I.A., Gronwall lemmas: ten open problems, Sci. Math. Jpn., 70(2009), 221-228.

Rus, I.A., Some nonlinear functional differential and integral equations, via weakly Picard operator theory: a survey, Carpathian J. Math., 26(2010), no. 2, 230-258.

Rus, I.A., An abstract point of view on iterative approximation of fixed points: impact on the theory of fixed point equations, Fixed Point Theory, 13(2012), no. 1, 179-192.

Rus, I.A., Results and problems in Ulam stability of operatorial equations and inclusions, In: T.M. Rassias (ed.), Handbook of Functional Equations: Stability Theory, Springer, 2014, 323-352.

Rus, I.A., Remarks on a LaSalle conjecture on global asymptotic stability, Fixed Point Theory, 17(2016), no. 1, 159-172.

Rus, I.A., Relevant classes of weakly Picard operators (to appear).

Rus, I.A., Petrusel, A., Petrusel, G., Fixed point theorems for set-valued Y -contractions, Fixed Point Theory and Applications, Banach Center Publ., 77, Polish Acad. Sci., Warsaw, 2007, 227-237.

Rus, I.A., Petrusel, A., Petrusel, G., Fixed Point Theory, Cluj Univ. Press, Cluj-Napoca, 2008.

Rus, I.A., Serban, M.A., Basic problems of the metric fixed point theory and the relevance of a metric fixed point theorem, Carpathian J. Math., 29(2013), no. 2, 239-258.

Sehgal, V.M., A fixed point theorem for mappings with a contractive iterate, Proc. Amer. Math. Soc., 23(1969), 631-634.

Serban, M.A., Fiber '-contractions, Stud. Univ. Babes-Bolyai Math., 44(1999), 99-108.

Serban, M.A., Teoria punctului fix pentru operatori definiti pe produs cartezian, Presa Universitara Clujeana, Cluj-Napoca, 2002.

Serban, M.A., Fiber contraction principle, generalizations and applications, (to appear).

Stein, J.D., A systematic generalization procedure for fixed point theorems, Rocky Mountain J. Math., 30(2000), no. 2, 735-754.

Suzuki, T., A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136(2008), no. 5, 1861-1869.

Walter, W., A note on contraction, SIAM Review, 18(1976), no. 1, 107-111.

Walter, W., Remarks on a paper by F. Browder about contraction, Nonlinear Anal., 5(1981), no. 1, 21-25.

Wang, J., Deng, J., Wei, W., Fractional iterative functional differential equations with impulses, Fixed Point Theory, 17(2016), no. 1, 189-200.

Wang, J, Zhou, Y., Medved, M., Picard and weakly Picard operators techniques for nonlinear differential equations in Banach spaces, J. Math. Anal. Appl., 389(2012), no. 1, 261-274.

Downloads

Published

2016-09-30

How to Cite

RUS, I. A. (2016). Some variants of contraction principle, generalizations and applications: Dedicated to Professor Gheorghe Coman on the occasion of his 80th anniversary. Studia Universitatis Babeș-Bolyai Mathematica, 61(3), 343–358. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/subbmathematica/article/view/5585

Issue

Section

Articles

Similar Articles

<< < 12 13 14 15 16 17 18 19 20 21 > >> 

You may also start an advanced similarity search for this article.