Local existence and blow up of solutions to a logarithmic nonlinear wave equation with time-varying delay
DOI:
https://doi.org/10.24193/subbmath.2023.1.13Keywords:
Wave equation, blow up, logarithmic source, varying delay term.Abstract
In this work, we are concerned with a problem of a logarithmic nonlinear wave equation with time-varying delay term. We established the local existence result and we proved a blow up result for the solution with negative initial energy under suitable conditions. This improves earlier results in the literature [11] for time-varying delay.
Mathematics Subject Classification (2010): 35B05, 35B40, 35Q99, 73C99.
Received 03 February 2020; Revised 21 April 2020. Published Online: 2023-03-20. Published Print: 2023-04-30
References
Benaissa, A., Ouchenane, D., Zennir, Kh., Blow up of positive initial-energy solutions to systems of nonlinear wave equations with degenerate damping andsource terms, Nonl. Studies, 19(2012), no. 4, 523-535.
Bialynicki-Birula, I., Mycielsk, J., Wave equations with logarithmic nonlinearities, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astron Phys., 23(1975), 461-466.
Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential equations, New York, Springer, 2010.
Cazenave, T., Stable solutions of the logarithmic Schrödinger equation, Nonlinear Anal., 7(1983), 1127-1140.
Cazenave, T., Haraux, A., Equation de Schrödinger avec non-linearité logarithmique, C.R. Acad. Sci. Paris Ser. A-B, 288(1979), A253-A256.
Cazenave, T., Haraux, A., Equations d’èvolution avec non-linearité logarithmique, Ann. Fac. Sci. Toulouse Math., 5(1980), 2(1), 21-51.
Feng, B., Zennir, Kh., Laouar, L.K., Decay of an extensible viscoelastic plate equation with a nonlinear time delay, Bull. Malays. Math. Sci. Soc., 42(2019), 2265-2285.
Gorka, P., Logarithmic quantum mechanics: Existence of the ground state, Found. Phys. Lett., 19(2006), 591-601.
Gorka, P., Convergence of logarithmic quantum mechanics to the linear one, Lett. Math. Phys., 81(2007), 253-264.
Han, X., Global existence of weak solution for a logarithmic wave equation arising from Q-ball dynamics, Bull. Korean Math. Soc., 50(2013), 275-283.
Kafini, M., Messaoudi, S.A., Local existence and blow up of solutions to a logarithmic nonlinear wave equation with delay, Appl. Anal., (2018), DOI: 10.1080/00036811.2018.1504029.
Komornik, V., Exact Controllability and Stabilization. The Multiplier Method, Paris, Masson-John Wiley, 1994.
Nicaise, S., Pignotti, C., Valein, J., Exponential stability of the wave equation with boundary time varying delay, Discrete Contin. Dyn. Syst. S, 4(3)(2011), 693-722, doi: 10.3934/dcdss.2011.4.693.
Ouchenane, D., Zennir, Kh., Bayoud, M., Global nonexistence of solutions for a system of nonlinear viscoelastic wave equations with degenerate damping and source terms, Ukrainian Math. J., 65(2013), no. 7, 723-939.
Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, New York, Springer-Verlag, 1983.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.