Generalized versus classical normal derivative

Authors

  • Lucas FRESSE Universit´é  de Lorraine, France e-mail: lucas.fresse@univ-lorraine.fr
  • Viorica V. MOTREANU Lycée Varoquaux, Tomblaine, France e-mail: vmotreanu@gmail.com

DOI:

https://doi.org/10.24193/subbmath.2023.1.02

Keywords:

Lipschitz domain, normal derivative, Green formula, generalized normal derivative, Neumann problem, strong maximum principle.

Abstract

Given a bounded domain with Lipschitz boundary, the general Green formula permits to justify that the weak solutions of a Neumann elliptic problem satisfy the Neumann boundary condition in a weak sense. The formula involves a generalized normal derivative. We prove a general result which establishes that the generalized normal derivative of an operator coincides with the classical one, provided that the operator is continuous. This result allows to deduce that, under usual regularity assumptions, the weak solutions of a Neumann problem satisfy the Neumann boundary condition in the classical sense. This information is necessary in particular for applying the strong maximum principle.

Mathematics Subject Classification (2010): 26B20, 46E35, 46T20, 35J25, 35B50.

Received 01 October 2022; Revised 01 February 2023. Published Online: 2023-03-20. Published Print: 2023-04-30

Author Biographies

Lucas FRESSE, Universit´é  de Lorraine, France e-mail: lucas.fresse@univ-lorraine.fr

Universit´é  de Lorraine, Institut É lie Cartan, 54506 Vandoeuvre-l`ès-Nancy, France e-mail: lucas.fresse@univ-lorraine.fr

Viorica V. MOTREANU, Lycée Varoquaux, Tomblaine, France e-mail: vmotreanu@gmail.com

Lycée Varoquaux, 10 rue Jean Moulin, 54510 Tomblaine, France e-mail: vmotreanu@gmail.com

References

Brezis, H., Analyse Fonctionnelle, Masson, Paris, 1983.

Casas, E., Fernández, L.A., A Green’s formula for quasilinear elliptic operators, J. Math. Anal. Appl., 142 (1989), no. 1, 62–73.

Evans, L.C., Gariepy, R.F., Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.

Fresse, L., Motreanu, V.V., Axiomatic Moser iteration technique, submitted.

Grisvard, P., Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, vol. 24, Pitman, Boston, MA, 1985.

Kenmochi, N., Pseudomonotone operators and nonlinear elliptic boundary value problems, J. Math. Soc. Japan, 27(1975), no. 1, 121–149.

Lieberman, G.M., Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12(1988), 1203–1219.

Motreanu, D., Motreanu, V.V., Papageorgiou, N., Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014.

Vázquez, J.L., A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12(1984), no. 3, 191–202.

Downloads

Published

2023-03-20

How to Cite

FRESSE, L., & MOTREANU, V. V. . (2023). Generalized versus classical normal derivative. Studia Universitatis Babeș-Bolyai Mathematica, 68(1), 29–42. https://doi.org/10.24193/subbmath.2023.1.02

Issue

Section

Articles

Similar Articles

<< < 20 21 22 23 24 25 26 27 28 29 > >> 

You may also start an advanced similarity search for this article.