Positive definite kernels on the set of integers, stability, some properties and applications

Authors

DOI:

https://doi.org/10.24193/subbmath.2022.4.13

Keywords:

Positive definite kernels, multivariate stochastic processes, Toepliz kernel, Kolgomorov decomposition.

Abstract

We define and investigate a class of positive definite kernel so called equivalent-kernel. We formulate and prove an analogous of Paley-Wiener theorem in the context of positive definite kernel. The main ingredient in the proof is Kolmogorov decomposition. Finally, some applications to stochastic processes are given.

Mathematics Subject Classification (2010): 42A82, 60G10.

Received 14 February 2020; Accepted 13 April 2020.

References

Bruzual, R., De la Barrera, A., Dom´ınguez, M., On positive definite kernels, related problems and applications, Extracta Math., 29(2014), no. 1-2, 97-115.

Carothers, N.L., A Short Course on Banach Space Theory, London Mathematical Society Student Texts, 64, Cambridge University Press, Cambridge, 2005.

Constantinescu, T., Schur Parameters, Factorization and Dilation Problems, Operator Theory: Advances and Applications, 82, Birkh¨auser Verlag, Basel, 1996.

De La Barrera, A., Ferrer, O., Lora, B., Equivalent multivariate stochastic processes, Int. J. Math. Anal., 11(2017), no. 1, 39-54.

Evans, D.E., Lewis, J.T., Dilations of Irreversible Evolutions in Algebraic Quantum Theory, Communications Dublin Inst. Advanced Studies, Ser. A, 24, 1977.

Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces. I. Sequence Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, 92, Springer-Verlag, Berlin-New York, 1977.

Paley, R., Wiener, N., Fourier Transforms in the Complex Domain, Reprint of the 1934 original, American Mathematical Society Colloquium Publications, 19, American Mathematical Society, Providence, RI, 1987.

Young, R.M., An Introduction to Nonharmonic Fourier Series, Pure and Applied Mathematics, 93, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York- London, 1980.

Downloads

Published

2022-12-02

How to Cite

DE LA BARRERA , A., FERRER, O., & SANABRIA, J. (2022). Positive definite kernels on the set of integers, stability, some properties and applications. Studia Universitatis Babeș-Bolyai Mathematica, 67(4), 841–854. https://doi.org/10.24193/subbmath.2022.4.13

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.