On the viscoelastic equation with Balakrishnan - Taylor damping and nonlinear boundary/interior sources with variable-exponent nonlinearities

Authors

  • Abita RAHMOUNE Laboratory of Pure and Applied Mathematics, Amar Telidji University-Laghouat 03000, Algeria, e-mail: abitarahmoune@yahoo.fr
  • Benyattou BENABDERRAHMANE Laboratory of Pure and Applied Mathematics, Mohamed Boudiaf University-M’Sila 28000, Algeria, e-mail: bbenyattou@yahoo.com

DOI:

https://doi.org/10.24193/subbmath.2020.4.09

Keywords:

Balakrishnan-Taylor damping, global existence, general decay, relaxation function, viscoelastic equation, Lebesgue and Sobolev spaces with variable exponents.

Abstract

This work is devoted to the study of a nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping and nonlinear boundary interior sources with variable exponents. Under appropriate assumptions, we establish a uniform decay rate of the solution energy in terms of the behavior of the nonlinear feedback and the relaxation function, without setting any restrictive growth assumptions on the damping at the origin and weakening the usual assumptions on the relaxation function.

Mathematics Subject Classification (2010): 49Q15, 35L05, 35L20 35B40, 35B35.

References

Aboulaich, R., Meskine, D., Souissi, A., New diffusion models in image processing, Comput. Math. Appl, 56(2008), no. 4, 874-882.

Antontsev, S.N., Shmarev, S.I., Elliptic Equations with Anisotropic Nonlinearity and Nonstandard Growth Conditions, a Handbook of Differential Equations, Stationary Partial Differential Equations, Elsevier/North Holland, Amsterdam, vol. 3, 2006.

Antontsev, S.N., Shmarev, S.I., Blow-up of solutions to parabolic equations with nonstandard growth conditions, J. Comput. Appl. Math., 234(2010), no. 9, 2633-2645.

Antontsev, S.N., Shmarev, S., Evolution PDES with Nonstandard Growth Conditions: Existence, Uniqueness, Localization, Blow-up, 1 ed., Atlantis Studies in Differential Equations, 4 Atlantis Press, 2015.

Antontsev, S.N., Zhikov, V., Higher integrability for parabolic equations of p(x, t)- Laplacian type, Adv. Differential Equations, 10(2005), no. 9, 1053-1080.

Arnold, V.I., Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, vol. 10.1007/978-1-4757-2063-1, 1989.

Chen, Y., Levine, S., Rao, M., Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math, 66(2006), 1383-1406.

Claudianor, O.A., Marcelo, M.C., On existence, uniform decay rates and blow up for solutions of the 2 − d wave equation with exponential source, Calculus of Variations and Partial Differential Equations, 34(2009), 377-411.

David, R.P., Rammaha, M.A., Global existence and non-existence theorems for nonlinear wave equations, Indiana University Mathematics Journal, 51(2002).

Diening, L., H¨asto, P., Harjulehto, P., Ruzicka, M., Lebesgue and Sobolev Spaces with Variable Exponents, Springer Lecture Notes, Springer-Verlag, vol. 2017, Berlin, 2011.

Diening, L., Ruzicka, M., Calderon Zygmund operators on generalized Lebesgue spaces Lp(x)(Ω) and problems related to fluid dynamics, Preprint Mathematische Fakulta¨t, Albert-Ludwigs-Universit¨at Freiburg, 120(2002), 197-220.

Edmunds, D.E., R´akosn´ık, J., Sobolev embeddings with variable exponent, Studia Math., 143(2000), no. 2, 424-446.

Fan, X.L., Boundary trace embedding theorems for variable exponent Sobolev spaces, J. Math. Anal. Appl, 339 (2008), no. 2, 1395-1412.

Fan, X., Shen, G., Multiplicity of positive solutions for a class of inhomogeneous Neumann problems involving the p(x)-Laplacian, Nonlinear Differ. Equ. Appl., 16(2009), 255-271.

Fan, X., Shen, G., Zhao, D., Sobolev embedding theorems for spaces Wk,p(x)(Ω), J. Math. Anal. Appl, 262 (2001), 749-760.

Fan, X.L., Zhao, D., On the space Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl., 263(2001), 424-446.

Fu, Y., The existence of solutions for elliptic systems with nonuniform growth, Studia Math., 151(2002), 227-246.

Guessmia, A., Messaoudi, S.A., General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping, Mathematical Methods in the Applied Sciences, 32(2009), 2102-2122.

Guesmia, A., Messaoudi, S.A., Webler, C.M., Well-posedness and optimal decay rates for the viscoelastic Kirchhoff equation, Boletim da Sociedade Paranaense de Matem´atica, 35(2017), 203-224.

Ha, T.G., On viscoelastic wave equation with nonlinear boundary damping and source term, Commun Pure Appl Anal., 6(2010), 1543-1576.

Howard, A.L., Grozdena, T., Blow up of solutions of the Cauchy problem for a wave equation with nonlinear damping and source terms and positive initial energy, Proceed- ings of the American Mathematical Society, 129(2001), 341-361.

Howard, A.L., Jame, S., Global nonexistence theorems for quasilinear evolution equations with dissipation, Archive for Rational Mechanics and Analysis, 137(1997), 341-361.

Kov`acik, O., R´akosnik, J., On spaces Lp(x)(Ω) and W 1,p(x)(Ω), Czechoslovak Math. J., 41(1991).

Levine, H.A., Instability and nonexistence of global solutions of nonlinear wave equation of the form putt = au + f (u), Trans. Amer. Math. Sci., 192(1974), 1-21.

Levine, H.A., Some additional remarks on the nonexistence of global solutions of nonlinear wave equation, SIAM J. Math. Anal, 5(1974), 138-146.

Lian, S., Gao, W., Cao, C., Yuan, H., Study of the solutions to a model porous medium equation with variable exponent of nonlinearity, J. Math. Anal. Appl., 342(2008), no. 1, 27-38.

Lions, J.L., Quelques m´ethodes de r´esolution des probl`emes aux limites non lin´eaires, Dunod, Paris, 1966.

Marcelo, M.C., Val´eria, N.D.C., Irena, L., Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction, Journal of Differential Equations, 236(2007), 407-459.

Miranda, M.M., Medeiros, L.A., Hidden regularity for semilinear hyperbolic partial differential equations, Ann. Fac. Sci. Toulouse Math., 1(1988), 103-120.

Munoz, J.E.R., Global solution on a quasilinear wave equation with memory, Nonlinear Analysis: Theory, Methods, and Applications, 8B(1994), 289-303.

Ono, K., Global existence, decay, and blow-up of solutions for some mildly degenerate nonlinear Kirchhoff strings, J. Differential Equations, 137(1997), 273-301.

Ono, K., On global solutions and blow-up solutions of nonlinear kirchoff string with nonlinear dissipations, J. Math. Anal. Appl., 216(1997), 321-342.

Patrizia, P., James, S., Global nonexistence for abstract evolution equations with positive initial energy, Journal of Differential Equations, 150(1998), 203-214.

Rahmoune, A., On the existence, uniqueness and stability of solutions for semilinear generalized elasticity equation with general damping, Acta Mathematica Sinica, English Series, 33(2017), no. 11, 1549-1564.

Rahmoune, A., Semilinear hyperbolic boundary value problem associated to the nonlinear generalized viscoelastic equations, Acta Mathematica Vietnamica, 43(2018), no. 2, 219- 238.

Rahmoune, A., Existence and asymptotic stability for the semilinear wave equation with variable-exponent nonlinearities, Journal of Mathematical Physics, 60(2019), 122701.

Ricardo, T., Jiongmin, Y., On a quasilinear wave equation with memory, Nonlinear Analysis: Theory, Methods, and Applications, 16(1991), 61-78.

Robert, T.G., Blow-up theorems for nonlinear wave equations, Mathematische Zeitschrift, 132(1973), 183-203.

Shun-Tang, W., General decay and blow-up of solutions for a viscoelastic equation with nonlinear boundary damping-source interactions, Zeitschrift fu¨r Angewandte Mathematik und Physik (ZAMP), 63(2012), 65-106.

Takeshi, T., Existence and asymptotic behavior of solutions to weakly damped wave equations of Kirchhoff type with nonlinear damping and source terms, Journal of Mathemat- ical Analysis and Applications, 361(2010), 566-578.

Tatar, N., Zara¨ı, A., Exponential stability and blow up for a problem with balakrishnan- taylor damping, Demonstratio Mathematica, 44(2011), 67-90.

Todorova, G., Vitillaro, E., Blow-up for nonlinear dissipative wave equations in Rn, J. Math. Anal. Appl, 303(2005), 242-257.

Downloads

Published

2020-11-28

How to Cite

RAHMOUNE, A., & BENABDERRAHMANE, B. (2020). On the viscoelastic equation with Balakrishnan - Taylor damping and nonlinear boundary/interior sources with variable-exponent nonlinearities. Studia Universitatis Babeș-Bolyai Mathematica, 65(4), 599–639. https://doi.org/10.24193/subbmath.2020.4.09

Issue

Section

Articles

Similar Articles

<< < 10 11 12 13 14 15 16 17 18 19 > >> 

You may also start an advanced similarity search for this article.