A class of functionals possessing multiple global minima

Authors

  • Biagio RICCERI Department of Mathematics and Informatics, University of Catania, Viale A. Doria 6, 95125 Catania, Italy e-mail: ricceri@dmi.unict.it

DOI:

https://doi.org/10.24193/subbmath.2021.1.06

Keywords:

Minimax, multiple global minima, variational methods, semilinear elliptic systems.

Abstract

We get a new multiplicity result for gradient systems. Here is a very particular corollary: Let Ω ⊂ Rn (n ≥ 2) be a smooth bounded domain and let Φ : R2 → R be a C1 function, with Φ(0, 0) = 0, such that...

Mathematics Subject Classification (2010): 35J47, 35J50, 49K35.

References

Cabada, A., Iannizzotto, A., A note on a question of Ricceri, Appl. Math. Lett., 25(2012), 215-219.

de Figueiredo, D.G., Semilinear elliptic systems: existence, multiplicity, symmetry of solutions, Handbook of Differential Equations: Stationary Partial Differential Equations, Vol. V, 1-48, Handb. Differ. Equ., Elsevier/North-Holland, 2008.

Pucci, P., Serrin, J., A mountain pass theorem, J. Differential Equations, 60(1985), 142- 149.

Ricceri, B., On a three critical points theorem, Arch. Math., 75(2000), 220-226.

Ricceri, B., Well-posedness of constrained minimization problems via saddle-points, J. Global Optim., 40(2008), 389-397.

Ricceri, B., Multiplicity of global minima for parametrized functions, Rend. Lincei Mat. Appl., 21(2010), 47-57.

Ricceri, B., Nonlinear eigenvalue problems, in “Handbook of Nonconvex Analysis and Applications” D. Y. Gao and D. Motreanu eds., 543-595, International Press, 2010.

Ricceri, B., A strict minimax inequality criterion and some of its consequences, Positivity, 16(2012), 455-470.

Ricceri, B., A range property related to non-expansive operators, Mathematika, 60(2014), 232-236.

Ricceri, B., Singular points of non-monotone potential operators, J. Nonlinear Convex Anal., 16(2015), 1123-1129.

Ricceri, B., Energy functionals of Kirchhoff-type problems having multiple global minima, Nonlinear Anal., 15(2015), 130-136.

Ricceri, B., On a minimax theorem: an improvement, a new proof and an overview of its applications, Minimax Theory Appl., 2(2017), 99-152.

Ricceri, B., Another multiplicity result for the periodic solutions of certain systems, Linear Nonlinear Anal., 5(2019), 371-378.

Ricceri, B., Miscellaneous applications of certain minimax theorems II, Acta Math. Vietnam., 45(2020), 515-524.

Ricceri, B., An alternative theorem for gradient systems, Pure Appl. Funct. Anal. (to appear).

Ricceri, B., A remark on variational inequalities in small balls, J. Nonlinear Var. Anal., 4(2020), 21-26.

Zeidler, E., Nonlinear functional analysis and its applications, vol. III, Springer-Verlag, 1985.

Downloads

Published

2022-10-13

How to Cite

RICCERI, B. (2022). A class of functionals possessing multiple global minima. Studia Universitatis Babeș-Bolyai Mathematica, 66(1), 75–84. https://doi.org/10.24193/subbmath.2021.1.06

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.