Various results in relation with the hypergeometric equations and the hypergeometric functions in the complex plane

Authors

  • Hüseyin IRMAK C¸ankırı Karatekin University, Faculty of Science, Department of Mathematics, Uluyazı Campus, TR 18100, C¸ ankırı, Turkey, e-mail: hirmak@karatekin.edu.tr, hisimya@yahoo.com https://orcid.org/0000-0003-1897-6725

DOI:

https://doi.org/10.24193/subbmath.2020.3.03

Keywords:

Complex plane, the second-order ordinary linear differential equation, the confluent hypergeometric equation, the confluent hypergeometric function, special functions defined by complex series, inequalities and equations in the complex plane.

Abstract

The main purpose of this investigation is to specify an extensive relation between the hypergeometric functions and the hypergeometric equations in the complex plane and then to point various implications of our main result, conclusion and also recommendations out.

Mathematics Subject Classification (2010): 30A10, 34A40, 33C05, 33C20, 33C45, 30C15, 33D15, 30D05, 33E20, 34K06, 37K20.

References

Abad, J., Sesma, J., Buchholz polynomials: A family of polynomials relating solutions of confluent hypergeometric and Bessel equations, J. Comput. Appl. Math., 101(1999), 237-241.

Abramowitz, M., Stegun, I.A., Confluent Hypergeometric Functions in Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, New York, 1972.

Ancarani, L.U., Gasaneo, G., Derivatives of any order of the confluent hypergeometric function 1F1(a, b, z) with respect to the parameter a or b, J. Math. Phys., 49(2008), no. 6, 16 pp.

Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M., Conformal Invariants, Inequalities and Quasiconformal Maps, John Wiley & Sons, 1997.

Andrews, G.E., Askey, R., Roy, R., Special Functions, Vol. 71 of Mathematics and its Applications, Cambridge University Press, UK, 1999.

Bailey, W.N., Generalized Hypergeometric Series, Cambridge University Press, Cambridge, 1935, Reprinted: Stechert-Hafner, New York, 1964.

Badralexe, R., Marksteiner, P., Oh, Y., Freeman, A.J., Computation of the Kummer functions and Whittaker functions by using Neumann type series expansions, Comput. Phys. Commun., 71(1992), 47-55.

Balasubramanian, R., Ponnusamy, S., Vuorinen, M., On hypergeometric functions and function spaces, J. Comput. Appl. Math., 139(2002), 299-322.

Bell, W.W., Special Functions for Scientists and Engineers, D. Van Nostrand Company Ltd., Reinhold, New York, 1968.

Carlson, B., Special Functions of Applied Mathematics, Academic Press, New York, 1977.

Chiarella, C., Reichel, A., On the evaluation of integrals related to the error function, Math. Comp., 22(1968), 137-143.

Coffey, M.W., Johnston, S.J., Some results involving series representations of hypergeometric functions, J. Comp. Appl. Math., 233(2009), 674-679.

Dotsenko, M., On some applications of Wright’s hypergeometric function, C.R. Acad. Bulgare Sci., 44(1991), 13-16.

Dunster, T.M., Asymptotic approximations for the Jacobi and ultraspherical polynomials and related functions, Methods Appl. Anal., 6(1999), 21-56.

El-Attar, R., Special Functions and Orthogonal Polynomials, Lulu Press, USA, 2006. [16] Erdelyi, A., Mangus, W., Oberhettinger, F., Tricomi, F.G., Higher Transcendental Functions, Vol. I, McGraw-Hill, New York, 1953.

Farrell, O.J., Ross, B., Solved Problems in Analysis, as applied to Gamma, Beta, Legendre and Bessel Functions, Dover Publications, New York, 1971.

Ferreira, C., Lopez, J.L., Sinusia, E.P., The Gauss hypergeometric function F (a, b; c; z) for large c, J. Comput. Appl. Math., 197(2006), 568-577.

Forrey, R.C., Computing the hypergeometric function, J. Comput. Phys., 137(1997), 79- 100.

Gasper, G., Rahman, M., Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, UK, 1990.

Gautschi, W., Efficient computation of the complex error function, SIAM J. Numer. Anal., 7(1970), 187-198.

Gil, A., Segura, J., Temme, N.M., Numerical Methods for Special Functions, Society for Industrial and Applied Mathematics, 2007.

Gradshteyn, I.S., Ryzhik, I.M., Table of Integrals, Series and Products, 7th ed. Elsevier, Academic Press, Amsterdam, 2007.

Hale, N., Townsend, A., Fast and accurate computation of Gauss-Legendre and Gauss- Jacobi quadrature nodes and weights, SIAM J. Sci. Comput., 35(2013), 652-674.

Hsu, Y.P., Development of a Gaussian hypergeometric function code in complex domains, Int. J. Modern Phys., 4(1993), 805-840.

Irmak, H., Certain complex equations and some of their implications in relation with normalized analytic functions, Filomat, 30(2016), 3371-3376.

Irmak, H., Some novel applications in relation with certain equations and inequalities in the complex plane, Math. Commun., 23(2018), 9-14.

Irmak, H., Agarwal, P., Some comprehensive inequalities consisting of Mittag-Leffler type functions in the complex plane, Math. Model. Nat. Phenom., 12(2017), 65-71.

Irmak, H., Bulboaca˘, T., Tuneski, N., Some relations between certain classes consisting of α-convex type and Bazilevic type functions, Appl. Math. Lett., 24(2011), 2010-2014.

Kalla, S.L., On the evaluation of the Gauss hypergeometric function, C.R. Acad. Bulgare Sci., 45(1992), 35-36.

Kanemitsu, S., Tsukada, H., Vistas of Special Functions, World Scientific Publishing Company, Singapore, 2007.

Lebedev, N.N., Special Functions and their Applications, Prentice Hall, New Jersey, 1965.

McKenna, S.J., A method of computing the complex probability function and other related functions over the whole complex plane, Astrophys. Space Sci., 107(1984), 71-83.

Morita, T., Use of the gauss contiguous relations in computing the hypergeometric functions 2F1(n + 1/2, n + 1/2; m; z), Interdiscip. Infor. Sci., 2(1996), 63-74.

Nunokawa, M., Goyal, S.P., Kumar, R., Sufficient conditions for starlikeness, J. Class. Anal., 1(2012), 85-90.

Nunokawa, M., Sokol, J., Thomas, D., On Ozaki’s condition for p-valency, C.R. Math. Acad. Sci. Paris, 356(2018), 382-386.

Olver, F.W.J., Asymptotics and Special Functions, AKP Classics, A.K. Peters Ltd., Wellesley, MA, 1997.

Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W., NIST Handbook of Mathematical Functions, Cambridge University Press, New York, USA, 2010.

Ponnusamy, S., Hypergeometric transforms of functions with derivative in a half plane, J. Comput. Appl. Math., 96(1998), 35-49.

Rainville, E.D., Special Functions, The Macmillan, New York, NY, USA, 1960. [41] Rainville, E.D., Special Functions, Chelsea Publishing Company, New York, 1960.

Rakha, M.A., El-Sedy, E.S., Application of basic hypergeometric series, Appl. Math. Comput., 148(2004), 717-723.

Seaborn, J.B., Hypergeometric Functions and their Applications, Springer-Verlag, 1991. [44] Slater, L.J., Confluent Hypergeometric Functions, Cambridge University Press, 1960. [45] Slater, L.J., The Second Form of Solutions of Kummer’s Equations and Confluent Hypergeometric Functions, Cambridge, Cambridge University Press, 1960.

Slater, L.J., Generalized Hypergeometric Functions, Cambridge University Press, 1966. [47] S¸an, M., Irmak, H., Some novel applications of certain higher order ordinary complex differential equations to normalized analytic functions, J. Appl. Anal. Comput., 5(2015), 479-484.

Temme, N.M., Special Functions: An Introduction to the Classical Functions of Mathematical Physics, Wiley, 1996.

Wallman, H., Transient response and the central limit theorem of probability, Proc. Symposia Appl. Math., 2(1950), 91-112.

Wang, Z.X., Guo, D.R., Special Functions, World Scientific, Singapore, 2010. [51] Zhang, S., Jin, J., Computation of Special Functions, Wiley, 1966.

Downloads

Published

2020-09-15

How to Cite

IRMAK, H. (2020). Various results in relation with the hypergeometric equations and the hypergeometric functions in the complex plane. Studia Universitatis Babeș-Bolyai Mathematica, 65(3), 345–356. https://doi.org/10.24193/subbmath.2020.3.03

Issue

Section

Articles

Similar Articles

<< < 17 18 19 20 21 22 23 24 25 26 > >> 

You may also start an advanced similarity search for this article.