Constrained visualisation using Shepard-Bernoulli interpolation operator

Authors

  • Teodora CĂTINAȘ “Babe¸s-Bolyai” University Faculty of Mathematics and Computer Sciences 1, Kog˘alniceanu St. 400084 Cluj-Napoca, Romania, e-mail: tcatinas@math.ubbcluj.ro https://orcid.org/0000-0002-9202-6982

DOI:

https://doi.org/10.24193/subbmath.2020.2.08

Keywords:

Scattered data, Shepard operator, constrained interpolation.

Abstract

We consider Shepard-Bernoulli operator in order to solve a problem of interpolation of scattered data that is constrained to preserve positivity, using the technique described by K.W. Brodlie, M.R. Asim and K. Unsworth (2005). We also give some numerical examples.

Mathematics Subject Classification (2010): 41A29, 41A05, 41A25, 41A35.

References

Asim, M.R., Mustafa, G., Brodlie, K.W., Constrained Visualization of 2D Positive Data using Modified Quadratic Shepard Method, WSCG, 2004.

Brodlie, K.W., Asim, M.R., Unsworth, K., Constrained Visualization Using the Shepard Interpolation Family, Computer Graphics Forum, 24(2005), 809-820.

Caira, R., Dell’Accio, F., Shepard-Bernoulli operators, Math. Comp., 76(2007), 299-321. [4] C˘atina¸s, T., The bivariate Shepard operator of Bernoulli type, Calcolo, 44(2007), 189-202.

Coman, Gh., The remainder of certain Shepard type interpolation formulas, Stud. Univ. Babe¸s-Bolyai Math., 32(1987), no. 4, 24-32.

Costabile, F.A., Dell’Accio, F., Expansion Over a Rectangle of Real Functions in Bernoulli Polynomials and Applications, BIT, 41(2001), no. 3, 451-464.

Franke, R., Scattered data interpolation: tests of some methods, Math. Comp., 38(1982), 181-200.

Franke, R., Nielson, G., Smooth interpolation of large sets of scattered data, Int. J. Numer. Meths. Engrg., 15(1980), 1691-1704.

Lazzaro, D., Montefusco, L.B., Radial basis functions for multivariate interpolation of large scattered data sets, J. Comput. Appl. Math., 140(2002), 521-536.

Renka, R.J., Multivariate interpolation of large sets of scattered data, ACM Trans. Math. Software, 14(1988), 139-148.

Renka, R.J., Cline, A.K., A triangle-based C1 interpolation method, Rocky Mountain J. Math., 14(1984), 223-237.

Shepard, D., A two dimensional interpolation function for irregularly spaced data, Proc. 23rd Nat. Conf. ACM, 1968, 517-523.

Downloads

Published

2020-06-05

How to Cite

CĂTINAȘ, T. (2020). Constrained visualisation using Shepard-Bernoulli interpolation operator. Studia Universitatis Babeș-Bolyai Mathematica, 65(2), 269–277. https://doi.org/10.24193/subbmath.2020.2.08

Issue

Section

Articles

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.