New subclasses of bi-univalent functions defined by multiplier transformation
DOI:
https://doi.org/10.24193/subbmath.2020.1.04Keywords:
Analytic, univalent, bi-univalent functions, multiplier transformation.Abstract
In the present paper, we introduce new subclasses of the function class $\sum$ of bi-univalent functions by using multiplier transformation. Furthermore, we obtain estimates on the coefficients $|a_2|, |a_3|~\text{and}~|a_4|$ for functions of this class. Relevant connections of the results presented here with various well-known results are briefly indicated.
Mathematics Subject Classification (2010): 30C45.
References
Ali, R.M., Lee, S.K., Ravichandran, V., Supramanian, S., Coefficient estimates for bi- univalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25(2012), 344-351.
Brannan, D.A., Clunie, J.G. (eds.), Aspects of Contemporary Complex Analysis (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1-20, 1979), Academic Press, New York and London, 1980.
Brannan, D.A., Taha, T.S., On some classes of bi-univalent functions, in: S.M. Mazhar, Hamoui, N.S. Faour (eds.), Mathematical Analysis and its Applications, Kuwait; February 18-21, 1985, in: KFAS Proceedings Series, Vol. 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, 53-60; see also Stud. Univ. Babe¸s-Bolyai Math., 31(1986), 70-77.
Cho, N.E., Kim, T.H., Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc., 40(2003), no. 3, 399-410.
Cho, N.E., Srivastava, H.M., Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modell., 37(2003), no. 1-2, 39-49.
Frasin, B.A., Aouf, M.K., New subclasses of bi-univalent functions, Appl. Math. Lett., 24(2011), 1569-1573.
Lewin, M., On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18(1967), 63-68.
Mishra, A.K., Soren, M.M., Coefficient bounds for bi-starlike analytic functions, Bull. Belg. Math. Soc. Simon Stevin, 21(2014), 157-167.
Netanyahu, E., The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1, Arch. Rational Mech. Anal., 32(1969), 100-112.
Pommerenke, Ch., Univalent Functions, Vandenhoeck and Rupercht, G¨ottingen, 1975. [11] Porwal, S., Darus, M., On a new subclass of bi-univalent functions, J. Egypt. Math. Soc., 21(2013), 190-193.
Porwal, S., Ghai, S.K., Kumar, K., Some new subclasses of bi-univalent functions, Stud. Univ. Babe¸s-Bolyai Math., 60(2015), no. 4, 543-552.
S˘al˘agean, G.S., Subclasses of univalent functions, Complex Analysis-Fifth Romanian Finish Seminar, Bucharest, 1(1983), 362-372.
Srivastava, H.M., Mishra, A.K., Gochhayat, P., Certain subclasses of analytic and bi- univalent functions, Appl. Math. Lett., 23(2010), 1188-1192.
Uralegaddi, B.A., Somanatha, C., Certain classes of univalent functions, in ”Current Topics in Analytic Function Theory”, 371-374, World Sci. Publishing, River Edge, NJ.
Xu, Q.H., Gui, Y.C., Srivastava, H.M., Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25(2012), no. 6, 990-994.
Xu, Q.H., Xiao, H.G., Srivastava, H.M., A certain general subclass of analytic and bi- univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218(23)(2012), 11461-11465.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.