Strong inequalities for the iterated Boolean sums of Bernstein operators

Dedicated to Professor Heiner Gonska on the occasion of his 70th anniversary.

Authors

  • Li CHENG Vocational and Technical College Institute of Nonlinear Analysis and Department of Mathematics Lishui University, 323000 Lishui, China, e-mail: li.cheng@uni-due.de and chenglilily@126.com
  • Xinlong ZHOU Faculty of Mathematics University of Duisburg-Essen 47048 Duisburg, Germany, e-mail: xinlong.zhou@uni-due.de

DOI:

https://doi.org/10.24193/subbmath.2019.3.01

Keywords:

Approximation rate, Bernstein operator, Boolean sum, strong inequality.

Abstract

In this paper we investigate the approximation properties for the iterated Boolean sums of Bernstein operators. The approximation behaviour of those operators is presented by the so-called strong inequalities. Moreover, such strong inequalities are valid for any individual continuous function on [0, 1]. The obtained estimate covers global direct, inverse and saturation results.

Mathematics Subject Classification (2010): 41A05, 41A25, 41A40.

References

Agrawal, P.N., Kasana, H.S., On the iterative combinations of Bernstein polynomials, Demonstratio Math., 17(1984), no. 3, 777-783.

Ditzian, Z., Totik, V., Moduli of Smoothness, New York, Springer-Verlag, 1987.

Dzamalov, M.S., On a theorem of E.V. Vornovskoi, (Russian), in: Operators and their Applications, Approximation of Functions, Equalities, Leningrad, 1985, 22-27.

Felbecker, G., Linearkombinationen von iterierten Bernsteinoperatoren, Manuscripta Math., 29(1979), 229-246.

Gawronski, W., Stadtmu¨ller, U., Linear combinations of iterated generalized Bernstein functions with an application to density estimation, Acta Sci. Math. (Szeged), 47(1984), 205-221.

Gonska, H.H., Zhou, X., Approximation theorem for the iterated Boolean sums of Bernstein operators, J. of Computational and Applied Mathematics, 53(1994), 21-31.

Knoop, K.B., Zhou, X., The lower estimate for linear positive operators (II), Results in Mathematics, 25(1994), 315-330.

Mastroianni, G., Occorsio, M.R., Una generalizzazione dell’operatore di Bernstein, Rend. Accad. Sci. Fis. Mat. Napoli, 44(1977), 151-169.

Micchelli, C., The saturation class and iterates of the Bernstein polynomials, J. Approx. Theory, 8(1973), 1-18.

Natanson, G.I., Application class and the method of I.P. Natanson and I. Yu. Kharrik in the algebraic case, (Russian), in: Operator Theory and Function Theory, No. 1 Leningrad Univ., Leningrad, 1983, 166-170.

Natanson, I.P., On the approximation of multiply differentiable periodic functions by means of singular integrals, (Russian), Dokl. Akad. Nauk SSSR, 82(1952), 337-339.

Downloads

Published

2022-11-18

How to Cite

CHENG, L., & ZHOU, X. (2022). Strong inequalities for the iterated Boolean sums of Bernstein operators: Dedicated to Professor Heiner Gonska on the occasion of his 70th anniversary. Studia Universitatis Babeș-Bolyai Mathematica, 64(3), 299–304. https://doi.org/10.24193/subbmath.2019.3.01

Issue

Section

Articles

Similar Articles

<< < 18 19 20 21 22 23 24 25 26 27 > >> 

You may also start an advanced similarity search for this article.