Strong inequalities for the iterated Boolean sums of Bernstein operators
Dedicated to Professor Heiner Gonska on the occasion of his 70th anniversary.
DOI:
https://doi.org/10.24193/subbmath.2019.3.01Keywords:
Approximation rate, Bernstein operator, Boolean sum, strong inequality.Abstract
In this paper we investigate the approximation properties for the iterated Boolean sums of Bernstein operators. The approximation behaviour of those operators is presented by the so-called strong inequalities. Moreover, such strong inequalities are valid for any individual continuous function on [0, 1]. The obtained estimate covers global direct, inverse and saturation results.
Mathematics Subject Classification (2010): 41A05, 41A25, 41A40.
References
Agrawal, P.N., Kasana, H.S., On the iterative combinations of Bernstein polynomials, Demonstratio Math., 17(1984), no. 3, 777-783.
Ditzian, Z., Totik, V., Moduli of Smoothness, New York, Springer-Verlag, 1987.
Dzamalov, M.S., On a theorem of E.V. Vornovskoi, (Russian), in: Operators and their Applications, Approximation of Functions, Equalities, Leningrad, 1985, 22-27.
Felbecker, G., Linearkombinationen von iterierten Bernsteinoperatoren, Manuscripta Math., 29(1979), 229-246.
Gawronski, W., Stadtmu¨ller, U., Linear combinations of iterated generalized Bernstein functions with an application to density estimation, Acta Sci. Math. (Szeged), 47(1984), 205-221.
Gonska, H.H., Zhou, X., Approximation theorem for the iterated Boolean sums of Bernstein operators, J. of Computational and Applied Mathematics, 53(1994), 21-31.
Knoop, K.B., Zhou, X., The lower estimate for linear positive operators (II), Results in Mathematics, 25(1994), 315-330.
Mastroianni, G., Occorsio, M.R., Una generalizzazione dell’operatore di Bernstein, Rend. Accad. Sci. Fis. Mat. Napoli, 44(1977), 151-169.
Micchelli, C., The saturation class and iterates of the Bernstein polynomials, J. Approx. Theory, 8(1973), 1-18.
Natanson, G.I., Application class and the method of I.P. Natanson and I. Yu. Kharrik in the algebraic case, (Russian), in: Operator Theory and Function Theory, No. 1 Leningrad Univ., Leningrad, 1983, 166-170.
Natanson, I.P., On the approximation of multiply differentiable periodic functions by means of singular integrals, (Russian), Dokl. Akad. Nauk SSSR, 82(1952), 337-339.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.