On Lupaș-Jain operators

Authors

DOI:

https://doi.org/10.24193/subbmath.2018.4.08

Keywords:

Lupa¸s operator, Jain operator, convexity, weighted uniform approximation, modulus of continuity function.

Abstract

In this paper, linear positive Lupa¸s-Jain operators are constructed and a recurrence formula for the moments is given. For the sequence of these operators; the weighted uniform approximation, also, monotonicity under convexity are obtained. Moreover, a preservation property of each Lupa¸s-Jain operator is presented.

Mathematics Subject Classification (2010): 41A36, 41A25.

References

Abel, U., Agratini, O., Asymptotic behaviour of Jain operators, Numer. Algorithms, 71(2016), 553–565.

Abel, U., Ivan, M., On a generalization of an approximation operator defined by A. Lupa¸s, Gen. Math., 15(2007), no. 1, 21–34.

Agratini, O., On a sequence of linear positive operators, Facta Univ. Ser. Math. Inform., 14(1999), 41–48.

Agratini, O., On the rate of convergence of a positive approximation process, Nihonkai Math. J., 11(2000), 47-56.

Agratini, O., Approximation properties of a class of linear operators, Math. Methods Appl. Sci., 36(2013), no. 17, 2353–2358.

Cheney, E.W., Charma, A., Bernstein power series, Canad. J. Math., 16(1964), 241-252. [7] Eren¸cin, A., Ba¸scanbaz-Tunca, G., Ta¸sdelen, F., Some properties of the operators defined by Lupa¸s, Rev. Anal. Num´er. Th´eor. Approx., 43(2014), no. 2, 168–174.

Farca¸s, A., An asymptotic formula for Jain’s operators, Stud. Univ. Babe¸s-Bolyai Math., 57(2012), no. 4, 511–517.

Finta, Z., Pointwise approximation by generalized Sz´asz-Mirakjan operators, Stud. Univ. Babe¸s-Bolyai Math., 46(2001), no. 4, 61–67.

Finta, Z., Quantitative estimates for some linear and positive operators, Stud. Univ. Babe¸s-Bolyai Math., 47(2002), no. 3, 71–84.

Gadzhiev, A.D., Theorems of the type of P.P. Korovkin’s type theorems, Mat. Zametki, 20(1976), no. 5, 781-786.

Gasper, G., Rahman, M., Basic Hypergeometric Series, Cambridge University Press, 2004.

Jain, G.C., Approximation of functions by a new class of linear operators, J. Aust. Math. Soc., 13(1972), no. 3, 271–276.

Li, Z., Bernstein polynomials and modulus of continuity, J. Approx. Theory, 102(2000), no.1, 171-174.

Lupa¸s, A., The approximation by some positive linear operators, In: Proceedings of the International Dortmund Meeting on Approximation Theory (M.W. Muller et al., eds.), Mathematical Research, Akademie Verlag, Berlin, 86(1995), 201-229.

Mhaskar, H.N., Pai, D.V., Fundamentals of approximation theory, CRC Press, Boca Raton, FL, Narosa Publishing House, New Delhi, 2000.

Olgun, A., Ta¸sdelen F., Erenc¸in, A., A generalization of Jain’s operators, Appl. Math. Comput., 266(2015), 6–11.

O¨ zarslan, M.A., Approximation Properties of Jain-Stancu Operators, Filomat, 30(2016), no. 4, 1081–1088.

Patel, P., Mishra, V.N., On new class of linear and positive operators, Boll. Unione Mat. Ital., 8(2015), no. 2, 81–96.

Stancu, D.D., Occorsio, M.R., On approximation by binomial operators of Tiberiu Popoviciu type, Rev. Anal. Num´er. Th´eor. Approx., 27(1998), 167-181.

Velleman, D.J., Call, G.S., Permutation and combination locks, Math. Mag., 68(1995), no. 4, 243-253.

Downloads

Published

2018-12-20

How to Cite

BAȘCANBAZ-TUNCA, G., BODUR, M., & SÖYLEMEZ, D. (2018). On Lupaș-Jain operators. Studia Universitatis Babeș-Bolyai Mathematica, 63(4), 525–537. https://doi.org/10.24193/subbmath.2018.4.08

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 23 24 25 26 27 28 29 30 31 32 > >> 

You may also start an advanced similarity search for this article.