Subclasses of p-valent meromorphic functions involving certain operator
DOI:
https://doi.org/10.24193/subbmath.2018.3.03Keywords:
Analytic, p-valent, meromorphic, linear operator, differential subordination, inclusion relationships.Abstract
In this paper we investigate some inclusion relationships of two new subclassses of meromorphically p-valent functions, defined by means of a linear operator. We also study some integral preserving properties and convolution properties of these classes.
Mathematics Subject Classification (2010): 30C45.
References
Aqlan, E., Jahangiri, J.M., Kulkarni, S.R., Certain integral operators applied to meromorphic p-valent functions, J. Nat. Geom., 24(2003), 111-120.
Bulboaca, T., Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
Eenigenberg, P., Miller, S.S., Mocanu, P.T., Reade, M.O., On Briot-Bouquet differential subordination, Gen. Inequal., 3(1983), 339-348.
Kumar, V., Shukla, S.L., Certain integrals for classes of p-valent meromorphic functions, Bull. Aust. Math. Soc., 25(1982), 85-97.
Miller, S.S., Mocanu, P.T., Differential Subordination: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
Miller, S.S., Mocanu, P.T., Differential subordinations and univalent functions, Michigan Math. J., 28(1981), no. 2, 157-171.
Miller, S.S., Mocanu, P.T., Differential subordinations and inequalities in the complex plane, J. Differential Equations, 67(1987), 199-211.
Mostafa, A.O., Inclusion results for certain subcasses of p-valent meromorphic functions associated with a new operator, J. Ineq. Appl., 169(2012), 1-14.
Ruscheweyh, S., Convolutions in Geometric Function Theory, S´eminaire de Math´ematiques Sup´erieures, vol. 83, Les Presses de l’Universit´e de Montr´eal, Montreal, Quebec, 1982.
Uralegaddi, B.A., Somanatha, C., Certain classes of meromorphic multivalent functions, Tamkang J. Math., 23(1992), 223–231.
Yang, D.G., Certain convolution operators for meromorphic functions, South. Asian Bull. Math., 25(2001), 175-186.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Studia Universitatis Babeș-Bolyai Mathematica
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.