Inequalities for the area balance of absolutely continuous functions
DOI:
https://doi.org/10.24193/subbmath.2018.1.03Keywords:
Functions of bounded variation, Lipschitzian functions, convex functions, integral inequalities.Abstract
We introduce the area balance function associated to a Lebesgue integrable function f : [a, b] → C by ABf (a, b, ·) : [a, b] → C, ABf (a, b, x) := x f (t) dt − x l (t) dt . a We show amongst other that, if f : I → C is an absolutely continuous function on the interval I and [a, b] ⊂ ˚I, where ˚I is the interior of I and such that fl is of bounded variation on [a, b] , then we have the inequality...
Mathematics Subject Classification (2010): 26D15, 25D10.
References
Azpeitia, A.G., Convex functions and the Hadamard inequality, Rev. Colombiana Mat., 28(1994), no. 1, 7-12.
Dragomir, S.S., A mapping in connection to Hadamard’s inequalities, An. O¨ ster. Akad. Wiss. Math.-Natur., (Wien), 128(1991), 17-20.
Dragomir, S.S., Two mappings in connection to Hadamard’s inequalities, J. Math. Anal. Appl., 167(1992), 49-56.
Dragomir, S.S., On Hadamard’s inequalities for convex functions, Mat. Balkanica, 6(1992), 215-222.
Dragomir, S.S., An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure & Appl. Math., 3(2002), no. 3, Art. 35.
Dragomir, S.S., Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc., 74(3)(2006), 471-476.
Dragomir, S.S., Refinements of the generalised trapezoid and Ostrowski inequalities for functions of bounded variation, Arch. Math. (Basel), 91(2008), no. 5, 450–460.
Dragomir, S.S., Gomm, I., Bounds for two mappings associated to the Hermite- Hadamard inequality, Preprint, RGMIA Res. Rep. Coll., 14(2011), to appear.
Dragomir, S.S., Milo´sevi´c, D.S., S´andor, J., On some refinements of Hadamard’s inequalities and applications, Univ. Belgrad, Publ. Elek. Fak. Sci. Math., 4(1993), 21-24.
Dragomir, S.S., Pearce, C.E.M., Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, 2000.
Guessab, A., Schmeisser, G., Sharp integral inequalities of the Hermite-Hadamard type, J. Approx. Theory, 115(2002), no. 2, 260–288.
Kilianty, E., Dragomir, S.S., Hermite-Hadamard’s inequality and the p-HH-norm on the Cartesian product of two copies of a normed space, Math. Inequal. Appl., 13(2010), no. 1, 1–32.
Merkle, M., Remarks on Ostrowski’s and Hadamard’s inequality, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 10(1999), 113–117.
Pearce, C.E.M., Rubinov, A.M., P-functions, quasi-convex functions, and Hadamard type inequalities, J. Math. Anal. Appl., 240 (1999), no. 1, 92–104.
Peˇcari´c, J., Vukeli´c, A., Hadamard and Dragomir-Agarwal inequalities, the Euler formulae and convex functions, Functional Equations, Inequalities and Applications, 105–137, Kluwer Acad. Publ., Dordrecht, 2003.
Toader, G., Superadditivity and Hermite-Hadamard’s inequalities, Studia Univ. Babe¸s- Bolyai Math., 39(1994), no. 2, 27–32.
Yang, G.-S., Hong, M.-C., A note on Hadamard’s inequality, Tamkang J. Math., 28(1997), no. 1, 33–37.
Yang, G.-S., Tseng, K.-L., On certain integral inequalities related to Hermite-Hadamard inequalities, J. Math. Anal. Appl., 239(1999), no. 1, 180–187.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Studia Universitatis Babeș-Bolyai Mathematica

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.