Integral characterizations for the (h, k)-splitting of skew-evolution semiflows

Authors

  • Claudia Luminița MIHIȚ West University of Timi¸soara Faculty of Mathematics and Computer Science Department of Mathematics V. Pˆarvan Blv. 4, 300223 Timi¸soara, Romania, e-mail: mihit.claudia@yahoo.com
  • Mihail MEGAN Academy of Romanian Scientists Independen¸tei 54, 050094 Bucharest, Romania West University of Timi¸soara Faculty of Mathematics and Computer Science Departament of Mathematics V. Pˆarvan Blv. 4, 300223 Timi¸soara, Romania, e-mail: mihail.megan@e-uvt.ro https://orcid.org/0000-0001-5127-6179

DOI:

https://doi.org/10.24193/subbmath.2017.3.08

Keywords:

Skew-evolution semiflows, (h,k)-splitting, (h,k)-dichotomy.

Abstract

The main aim of this paper is to give integral characterizations for a general concept of (h, k)-splitting for skew-evolution semiflows in Banach spaces. As consequences, criteria for the properties of (h, k)-dichotomy, nonuniform exponential splitting and exponential splitting are obtained.

Mathematics Subject Classification (2010): 34D09, 40C10.

References

Aulbach, B., Kalkbrenner, J., Exponential forward splitting for noninvertible difference equations, Comput. Math. Appl., 42(2001), 743-754.

Barbashin, E.A., Introduction to Stability Theory, Nauka, Moscow, 1967.

Barreira, L., Chu, J., Valls, C., Robustness of nonuniform dichotomies with different growth rates, Sao Paolo J. Math. Sci., 2(2011), 203-231.

Barreira, L., Valls, C., Nonuniform exponential dichotomies and admissibility, Discrete and Contin. Dyn. Syst. Series B., 30(2011), no. 1, 39-53.

Bento, A.J.G., Lupa, N., Megan, M., Silva, C., Integral conditions for nonuniform µ- dichotomy on the half-line, accepted for publication in Discrete and Contin. Dyn. Syst.- Series B.

Bento, A.J.G., Silva, C., Nonuniform dichotomic behavior: Lipschitz invariant manifolds for ODEs, Bull. Sci. Math., 138(2014), no. 1, 89-109.

Chow, S.N., Leiva, H., Existence and roughness of the exponential dichotomy for skew- product semiflow in Banach spaces, J. Differential Equation, 120(1995), 429-477.

Datko, R., Uniform Asymptotic Stability of Evolutionary Processes in Banach Space, SIAM J. Math. Anal., 3(1972), 428-445.

Elaydi, S., Hajek, O., Exponential dichotomy and trichotomy of nonlinear differential equations, Differential Integral Equations, 3(1990), 1201-1204.

Hai, P.V., Continuous and discrete characterizations for the uniform exponential stability of linear skew-evolution semiflows, Nonlinear Anal., 72(2010), 4390-4396.

Huy, N.T., Existence and robustness of exponential dichotomy of linear skew-product semiflows over semiflows, J. Math. Anal. Appl., 333(2007), 731-752.

Kovacs, M.I., Babu¸tia, M.G., Megan, M., On (h, k)- dichotomy in Banach spaces, Bull. S¸tiin¸t. Univ. Politeh. Timi¸s. Ser. Mat. Fiz., 59(2014), 19-27.

Latushkin, Y., Montgomery-Smith, S., Randolph, T., Evolutionary semigroups and dichotomy of linear skew-product flows on locally compact spaces with Banach fibers, J. Differential Equations, 125(1996), 73-116.

Latushkin, Y., Schnaubelt, R., Evolution semigroups, translation algebras and exponential dichotomy of cocycles, J. Differential Equations, 159(1999), 321-369.

Lizana, M., Roughness of (µ1, µ2)-dichotomies under small perturbations in L∞, Divulg. Mat., 6(1998), 133-138.

Megan, M., On (h, k)-dichotomy of evolution operators in Banach spaces, Dynam. Systems Appl., 5(1996), 189-196.

Megan, M., Popa, I.L., Exponential splitting for nonautonomous linear discrete-time systems in Banach spaces, J. Computat. Appl. Math., 312(2017), 181-191.

Megan, M., Sasu, A.L., Sasu, B., Uniform exponential dichotomy and admissibility for linear skew-product semiflows, Oper. Theory Adv. Appl., 153(2004), 185-195.

Megan, M., Stoica, C., Buliga, L., On asymptotic behaviours for linear skew-evolution semiflows in Banach spaces, Carpathian J. Math., 23(2007), 117-125.

Megan, M., Stoica, C., Exponential instability of skew-evolution semiflows in Banach spaces, Stud. Univ. Babe¸s-Bolyai Math., 53(2008), no. 1, 17-24.

Mihi¸t, C.L., Borlea, D., Megan, M., On some concepts of (h, k)-splitting for skew evolution semiflows in Banach spaces, to appear in Ann. Acad. Rom. Sci. Ser. Math. Appl.

Sacker, R.J., Sell, G.R., Dichotomies for linear evolutionary equations in Banach spaces, J. Differential Equations, 113(1994), 17-67.

Sasu, A.L., Sasu, B., Translation invariant spaces and asymptotic properties of variational equations, Abstr. Appl. Anal., (2011), Art. ID 539026, 1-36.

Sasu, A.L., Sasu, B., Integral equations in the study of the asymptotic behavior of skew- product flows, Asymptot. Anal., 68(2010), 135-153.

Stoica, C., Megan, M., On uniform exponential stability for skew-evolution semiflows on Banach spaces, Nonlinear Anal., 72(2010), no. 3-4, 1305-1313.

Downloads

Published

2017-09-30

How to Cite

MIHIȚ , C. L., & MEGAN, M. (2017). Integral characterizations for the (h, k)-splitting of skew-evolution semiflows. Studia Universitatis Babeș-Bolyai Mathematica, 62(3), 353–365. https://doi.org/10.24193/subbmath.2017.3.08

Issue

Section

Articles

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.