A study on Hermite-Hadamard type inequalities for s-convex functions via conformable fractional integrals

Authors

  • Erhan SET Department of Mathematics, Faculty of Arts and Sciences, Ordu University 52200 Ordu, Turkey, e-mail: erhanset@yahoo.com
  • Abdurrahman GÖZPINAR Department of Mathematics, Faculty of Arts and Sciences, Ordu University 52200 Ordu, Turkey, e-mail: abdurrahmangozpinar79@gmail.com

DOI:

https://doi.org/10.24193/subbmath.2017.3.04

Keywords:

s-convex functions, Hermite-Hadamard inequality, conformable fractional integrals.

Abstract

In the present note, firstly we established a generalization of Hermite Hadamard’s inequality for s-convex functions via conformable fractional integrals which generalized Riemann-Liouville fractional integrals. Secondly, we proved new identity involving conformable fractional integrals via beta and incompleted beta functions.Then, by using this identity, some Hermite Hadamard type integral inequalities for s-convex functions in the second sense are obtained.

Mathematics Subject Classification (2010): 26A33, 26A51, 26D10, 26D15.

References

Abdeljawad, T., On conformable fractional calculus, J. Comput. Appl. Math., 279(2015), 57-66.

Abdeljawad, T., On multiplicative fractional calculus, arxiv:1510, o4176v1 [math.CA], 6 Oct 2015.

Alomari, M., Darus, M., Dragomir, S.S., Cerone, P., Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23(9), 1071-1076.

Anderson, O.R., Taylor’s formula and integral inequalities for conformable fractional derivatives, arxiv:140958888v1 [math. CA], 20 Sep 2014.

Avci, M., Kavurmaci, H., O¨ zdemir, M.E., New inequalities of Hermite-Hadamard type via s-convex functions in the second sense with applications, Appl. Math. Comput., 217(12), 5171-5176.

Benkhettou, N., Hassani, S., Torres, D.E.M., A conformable fractional calculus on arbitrary time, J. King Saud Univ. Sci., 28(2016), 9398.

Breckner, W.W., Stetigkeitsaussagen fr eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Raumen, Publ. Inst. Math., 23(1978), 13-20.

Chen, F., Extensions of the Hermite-Hadamard Inequality for convex functions via fractional integrals, J. Math. Ineq., 10(1)(2016), 75-81.

Dahmani, Z., New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9(4)(2010), 493-497.

Dahmani, Z., Tabharit, L., Taf, S., New generalizations of Gruss inequality using RiemannLiouville fractional integrals, Bull. Math. Anal. Appl., 2(3)(2010), 93-99.

Dragomir, S.S., Agarval, R.R., The Hadamard’s inequality for s-convex functions in the second sense, Demonstratio Math., 32(4)(1999), 687-696.

Dragomir, S.S., Fitzpatrik, S., Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11(5)(1998), 91-95.

Dragomir, S.S., Pearce, C.E.M., Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.

Gorenflo, R., Mainardi, F., Fractional Calculus: Integral and Differential Equations of Fractional Order, 2008, arXiv preprint arXiv:0805.3823.

Hudzik, H., Maligranda, L., Some remarks on s-convex functions, Aequationes Math., 48(1994), 100-111.

I˙¸scan, I˙., Generalization of different type integral inequalities for s-convex functions via fractional integrals, Appl. Anal., 93(9)(2014), 1846-1862.

I˙¸scan, I˙., Hermite Hadamard type inequalities for harmonically convex functions via fractional integral, Appl. Math. Comput., 238(2014), 237-244.

Khalil, R., Al Horani, M., Yousef, A., Sababheh, M., A new definition of fractional derivative, J. Comput. Appl. Math., 264(2014), 65-70.

O¨ zdemir, M.E., Kavurmacı, H., Yıldız, C¸ ., Fractional integral inequalities via s-convex functions, Turkish J. Anal. Number Theory, 5(1)(2017), 18-22.

Podlubni, I., Fractional Differential Equations, Academic Press, San Diego, 1999.

Sarıkaya, M.Z., Set, E., Yaldız, H., Ba¸sak, N., Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57(2013), 2403-2407.

Set, E., Sarıkaya, M.Z., O¨ zdemir, M.E., Yıldırım, H., The Hermite-Hadamard’s inequality for some convex functions via fractional integrals and related results, J. Appl. Math. Stat. Inform., 10(2)(2014), 69-83.

Set, E., New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comput. Math. Appl., 63(7)(2012), 1147- 1154.

Set, E., Akdemir, A.O., Mumcu, I˙., The Hermite-Hadamard’s inequality and its extentions for conformable fractioanal integrals of any order α > 0, Submitted.

Set, E., Akdemir, A.O., Mumcu, I˙., Ostrowski type inequalities for functions whoose derivatives are convex via conformable fractional integrals, J. Adv. Math. Stud., 10(3)(2017), 386-395.

Set, E., Akdemir, A.O., Mumcu, I˙., Chebyshev type inequalities for conformable fractional integrals, Submitted.

Set, E., Mumcu, I˙., Hermite-Hadamard-Fejer type inequalies for conformable fractional integrals , Submitted.

Zhu, C., Feckan, M., Wang, J., Fractional integral inequalities for differentiable convex mappings and applications to special means and a midpoint formula, J. Math. Stat. Inform., 8(2)(2012), 21-28.

Downloads

Published

2017-09-30

How to Cite

SET, E., & GÖZPINAR, A. (2017). A study on Hermite-Hadamard type inequalities for s-convex functions via conformable fractional integrals. Studia Universitatis Babeș-Bolyai Mathematica, 62(3), 309–323. https://doi.org/10.24193/subbmath.2017.3.04

Issue

Section

Articles

Similar Articles

<< < 11 12 13 14 15 16 17 18 19 20 > >> 

You may also start an advanced similarity search for this article.