On a new family of generalized Bernstein operators

Authors

  • Maria TALPĂU DIMITRIU ”Transilvania” University of Bra¸sov, Faculty of Mathematics and Informatics, B-dul Eroilor nr. 29, 500036 Bra¸sov, Romania, e-mail: mdimitriu@unitbv.ro

DOI:

https://doi.org/10.24193/subbmath.2022.3.12

Keywords:

Bernstein-type operators, global smoothness preservation, second order modulus of continuity.

Abstract

In this paper we remark that α-Bernstein operators, introduced by X. Y. Chen et al., are combinations of two known operators (Stancu and Bernstein operators) and we establish the preservation of global smoothness properties by these linear operators, the global smoothness being expressed by a Lipschitz condition with a certain second order modulus of continuity.

Mathematics Subject Classification (2010): 41A36, 41A17.

Received 27 June 2020; Accepted 29 August 2020.

References

Adell, J.A., de la Cal, J., Preservation of moduli of continuity by Bernstein-type operators, in: Approximation, Probability and Related Fields (G.A. Anastassiou and S.T. Rachev Eds.), Plenum Press, New York, (1994), 1-18.

Anastassiou, G.A., Cottin, C., Gonska, H.H., Global smoothness of approximating functions, Analysis (Munich), 11(1991), 43-57.

Anastassiou, G.A., Gal, S., Approximation Theory: Moduli of Continuity and Global Smoothness Preservation, Birkha¨user, Boston, 2000.

Brown, B.M., Elliot, D., Paget, D.F., Lipschitz constants for the Bernstein polynomials of a Lipschitz continuous function, J. Approx. Theory, 49(1987), 196-199.

Chen, X, Tan, J., Liu, Z., Xie, J., Approximation of functions by a new family of generalized Bernstein operators, J. Math. Anal. Appl., 450(2017), 244-261.

Cottin, C., Gonska, H.H., Simultaneous approximation and global smoothness preservation, Rend. Circ. Mat. Palermo (2) Suppl., 33(1993), 259-279.

Hajek, D., Uniform polynomial approximation, Amer. Math. Monthly, 72(1965), 681. [8] Lindvall, T., Bernstein polynomials and the law of large numbers, Math. Sci., 7(1982), 127-139.

P˘altanea, R., Improved constant in approximation with Bernstein operators, Research Seminars Fac. Math. Babe¸s-Bolyai Univ., Cluj-Napoca, 6(1988), 261-268.

P˘altanea, R., Approximation Theory Using Positive Linear Operators, Birkha¨user, 2004.

Stancu, D.D., A note on a multiparameter Bernstein-type approximating operator, Mathematica (Cluj), 26(49)(1984), no. 2, 153-157.

Talpau Dimitriu, M., On global smoothness preservation by Bernstein-type operators, Stud. Univ. Babe¸s-Bolyai Math., 60(2015), no. 2, 303-310.

Talpau Dimitriu, M., Global smoothness preservation for the Stancu operators on simplex, An. Univ. Oradea Fasc. Mat., 23(2016), no. 2, 49-56.

Zhou, D.-X., On a problem of Gonska, Results Math., 28(1995), 169-183.

Downloads

Published

2022-09-20

How to Cite

TALPĂU DIMITRIU , M. (2022). On a new family of generalized Bernstein operators. Studia Universitatis Babeș-Bolyai Mathematica, 67(3), 607–613. https://doi.org/10.24193/subbmath.2022.3.12

Issue

Section

Articles

Similar Articles

<< < 23 24 25 26 27 28 29 30 > >> 

You may also start an advanced similarity search for this article.