On a unification of Mittag-Leffler function and Wright function
DOI:
https://doi.org/10.24193/subbmath.2025.2.02Keywords:
Mittag-Leffler function, Wright function, $\theta$-form differential equation, Fractional derivatives and integralsAbstract
We introduce here a function that unifies Mittag-Leffler function and Wright function which is referred to here as an UMLW-function. This function turns out to be a solution of an infinite order differential equation. With the aid of this UMLW-function, an integral operator is constructed and shown that it is bounded in Lebesgue measurable space. Further an eigen function property is established for a particular UMLW-function with the help of hyper-Bessel operator and Caputo fractional derivative operator. Some well-known functions occur in the illustrations of these properties. At the end, the graphs of this UMLW-function are plotted by suitably specializing the parameters and also compared with the graph of exponential as well as Mittag-Leffler function.
Mathematics Subject Classification (2010): 26A33, 33E12, 40A05.
Received 26 July 2024; Accepted 22 October 2024.
References
1. Chudasama, M.H., A new generalization of q-hypergeometric function, Boll. Unione. Mat. Ital., 8(2016), no. 4, 239-256.
2. Chudasama, M.H., A new extension of Bessel function, Commun. Korean Math. Soc., 36(2021), no. 2, 277-298.
3. Chudasama, M.H., Dave, B.I., A new class of functions suggested by the q-hypergeometric function, The Mathematics Student, 85(2016), no. 3-4, 47-61.
4. Chudasama, M.H., Dave, B.I., Some new class of special functions suggested by the confluent hypergeometric function, Annali Dell' Università Di Ferrara, 62(2016), no. 1, 23-38.
5. Chudasama, M.H., Dave, B.I., A new class of functions suggested by the generalized basic hypergeometric functions, Journal of Indian Mathematical Society, 84(2017), no. 3-4, 161-181.
6. Chudasama, M.H., Dave, B.I., Certain properties of the q-`- Bessel function, Boll. Unione. Mat. Ital., 11(2018), no. 3, 377-393.
7. Chudasama, M.H., Dave, B.I., A new class of functions suggested by the generalized hypergeometric function, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.), 65(2019), no. 1, 19-39.
8. Dattoli, G., Ricci, P.E., Laguerre-type exponentials, and the relevant L-circular and L-hyperbolic functions, Georgian Mathematical Journal, 10(2003), no. 3, 481-494.
9. Erdély, A., et al. (Eds.), Higher Transcendental Functions, vol. 1, McGraw-Hill, New York, 1953.
10. Garra, R., Polito, F., On some operators involving Hadamard derivatives, Integral Transforms and Special Functions, 24(2013), 773-782.
11. Kiryakova, V., Multiple (multi-index) Mittag-Leffler functions and relations to generalized fractional calculus, Journal of Computational and Applied Mathematics, 118(2000), 241-259.
12. Mainardi, F., Mura, A., Pagnini, G., The M-Wright function in time-fractional diffusion processes: A tutorial survey, 2010.
13. Mathai, A.M., Haubold, H.J., Special Functions for Applied Scientists, Springer, New York, 2008.
14. Merichev, O., Handbook of Integral Transforms and Higher Transcendental Functions, Ellis, Horwood, Chichester (John Wiley and Sons), 1983.
15. Mittag-Leffler, G.M., Sur la nouvelle function eα(x). Comptes Rendus de l'Académie des Sciences, Paris, 137(1903), 554-558.
16. Prabhakar, T.R., A singular equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math., (1971), 7-15.
17. Rainville, E.D., Special Functions, The Macmillan Company, New York, 1960.
18. Ricci, P.E., Tavkhelidze, I., An introduction to operational techniques and special polynomials, Journal of Mathematical Sciences, 157(2009), 161-189.
19. Shukla, A., Prajapati, J., On a generalization of Mittag-Leffler function and its properties, Journal of Mathematical Analysis and Applications, 336(2007), no. 2, 797-811.
20. Sikkema, P.C., Differential Operators and Equations P. Noordhoff N. V., Groningen-Djakarta, 1953.
21. Srivastava, H., Živorad T., Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Applied Mathematics and Computation, 211(2009), no. 1, 198-210.
22. Wiman, A., Über die Nullstellen der Funktionen eα(x), Acta Math., 29(1905), 217-234.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Mathematica

This work is licensed under a Creative Commons Attribution 4.0 International License.