On some cluster sets problems

Authors

  • Mihai CRISTEA University of Bucharest, Faculty of Mathematics and Computer Sciences, Str. Academiei 14, R-010014, Bucharest, Romania, e-mail: mcristea@fmi.unibuc.ro

DOI:

https://doi.org/10.24193/subbmath.2022.2.12

Keywords:

Generalizations of quasiregular mappings, cluster sets theorems.

Abstract

We generalize some cluster sets theorems of Tsuji and Iversen from plane holomorphic mappings to the class of ring mappings.

Mathematics Subject Classification (2010): 30C65 31A15.

Received 11 October 2021; Accepted 16 November 2021.

References

Caraman, M., Relations between p-capacity and p-module, (II), Rev. Roumaine Math. Pures Appl., 39(1994), no. 6, 555-577.

Cristea, M., Local homeomorphisms having local ACLn inverses, Complex Var. Elliptic Equ., 53(2008), no. 1, 77-99.

Cristea, M., Open, discrete mappings having local ACLn inverses, Complex Var. Elliptic Equ., 55(2010), no. 1-3, 61-90.

Cristea, M., Dilatations of homeomorphisms satisfying some modular inequalities, Rev. Roumaine Math. Pures Appl., 56(2011), no. 4, 275-282.

Cristea, M., Mappings satisfying some modular inequalities, Rev. Roumaine Math. Pures Appl., 57(2012), no. 2, 117-132.

Cristea, M., Some metric relations of the homeomorphisms satisfying generalized modular inequalities, (I), Math. Rep. (Bucur.), 15(65)(2013), no. 4, 387-396.

Cristea, M., Some metric relations of the homeomorphisms satisfying generalized modular inequalities, (II), Analele Univ. Bucuresti Matem., LXIII(2014), no. 5, 49-60.

Cristea, M., Some properties of open, discrete generalized ring mappings, Complex Var. Elliptic Equ., 61(2016), no. 5, 623-643.

Cristea, M., Eliminability results for mappings satisfying generalized modular inequalities, Complex Var. Elliptic Equ., 64(2019), no. 4, 676-684.

Cristea, M., Boundary behaviour of open, light mappings in metric measure spaces, Annales Fenn. Mathematici, 46(2021), no. 2, 1179-1201.

Golberg, A., Salimov, R., Logarithmic Ho¨lder continuity of ring homeomorphisms, with controlled p-moduli, Complex Var. Elliptic Equ., 59(2014), no. 1, 91-98.

Golberg, A., Salimov, R., Sevost’yanov, E., Singularities of discrete, open mappings with controlled p-moduli, J. Anal. Math., 1(2015), 303-328.

Golberg, A., Salimov, R., Sevost’yanov, E., Normal families of discrete, open mappings with controlled p-moduli, Complex Analysis and Dynamical Systems, VI, Part 2: Complex Analysis, Quasiconformal mappings, Complex Dynamics, 667(2016), 83-103.

Golberg, A., Salimov, R., Ho¨lder continuity of homeomorphisms with controled growth of their spherical means, Complex Anal. and Oper. Theory, 11(2017), no. 8, 1825-1838.

Golberg, A., Sevost’yanov, R., Absolute continuity on path of spatial discrete mappings, Anal. Math. Phys., 81(2018), no. 1, 25-35.

Kovtonyuk, D., Ryazanov, V., Salimov, R., Towards the theory of Orlicz-Sobolev classes, St. Petersburg Math. J., 25(2014), no. 6, 929-963.

Kruglikov, I.V., Capacities of condensers and quasiconformal in the mean mappings in space, (Russian), Mat. Sb., 130(172)(1986), no. 2, translation on Math. USSR Sb., 1(1987), 185-205.

Martio, O., Rickman, S., Boundary behaviour of quasiregular mappings, Ann. Acad. Sci. Fenn. Math., AI, 507(1972), 1-17.

Martio, O., Ryazanov, V., Srebro, U., Yakubov, E., Mappings of finite lenght distortion, J. Anal. Math., 93(2004), 215-236.

Martio, O., Ryazanov, V., Srebro, U., Yakubov, E., On Q-homeomorphisms, Ann. Acad. Sci. Fenn., Ser AI, 30(2005), no. 1, 49-69.

Martio, O., Ryazanov, V., Srebro, U., Yakubov, E., Moduli in Modern Mapping Theory, New York (NY), Springer Monographs in Math, Springer, 2009.

N¨akki, R., Extension of Loewner capacity theorem, Trans. Amer. Math. Soc., 180(1973), 229-236.

N¨akki, R., Prime ends and quasiconformal mappings, J. Anal. Math., 33(1979), 13-40.

N¨akki, R., Conformal cluster sets and boundary cluster sets, Pacific J. Math., 141(1990), 363-382.

N¨akki, R., Cluster sets and quasiconformal mappings, Complex Var. Elliptic Equ., 55(2010), no. 1-3, 31-47.

Noshiro, K., Cluster Sets, Ergebnisse Math. Wissensch, 162, Springer-Verlag, Berlin Heidelberg New Work, 1960.

Ryazanov, V., Salimov, R., Sevost’yanov, E., On convergence analysis of space homeo-morphisms, Siberian Adv. Math., 23(2013), no. 4, 263-293.

Ryazanov, V., Sevost’yanov, E., Towards the theory of ring Q-homeomorphisms, Israel J. Math., 168(2008), 101-115.

Ryazanov, V., Sevost’yanov, E., Equicontinuity of mappings quasiconformal in the mean, Ann. Acad. Sci. Fenn., Math., 36(2011), 1-14.

Salimov, R., On regular homeomorphisms in the plane, Ann. Acad. Sci. Fenn., Math., 35(2010), 285-289.

Salimov, R., Sevost’yanov, E., ACL and differentiablity of the open, discrete ring mappings, Complex Var. Elliptic Equ., 55(2010), no. 1-3, 49-59.

Sevost’yanov, E., Theorems of Liouville, Picard and Sohotskii for ring mappings, Ukrainian Math. Bull., 3(2008), 366-381.

Sevost’yanov, E., About normal families of space mappings with branching, Ukr. Math. J., 60(2008), no. 10, 1389-1400.

Vuorinen, M., Exceptional sets and boundary behaviour of quasiregular mappings in n-space, Ann. Acad. Sci. Fenn., AI, Math. Dissertations, 1976.

Vuorinen, M., On the Iversen-Tsuji theorem for quasiregular mappings, Math. Scand., 41(1977), 90-98.

Vuorinen, M., On the existence of angular limits of n-dimensional quasiconformal mappings, Ark. Math., 18(1980), 157-180.

Zoric, V.A., Angular boundary values of quasiconformal mappings of a ball, (Russian), Dokl. Akad. Nauk, SSSR, 179(1967), 1492-1494.

Downloads

Published

2022-06-10

How to Cite

CRISTEA, M. (2022). On some cluster sets problems. Studia Universitatis Babeș-Bolyai Mathematica, 67(2), 361–368. https://doi.org/10.24193/subbmath.2022.2.12

Issue

Section

Articles

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.