Linear invariance and extension operators of Pfaltzgraff–Suffridge type

Authors

DOI:

https://doi.org/10.24193/subbmath.2022.2.06

Keywords:

Linear-invariant family, Pfaltzgraff–Suffridge extension operator, Roper–Suffridge extension operator, convex mapping.

Abstract

We consider the image of a linear-invariant family F of normalized locally biholomorphic mappings defined in the Euclidean unit ball Bn of Cn under the extension operator

Φn,m,β [f ](z, w) = (f (z), [Jf (z)]βw\,      (z, w) ∈ Bn+m ⊆ Cn × Cm,

where β ∈ C, Jf denotes the Jacobian determinant of f , and the branch of the power function taking 0 to 1 is used. When β = 1/(n + 1) and m = 1, this is the Pfaltzgraff–Suffridge extension operator. In particular, we determine the order of the linear-invariant family on Bn+m generated by the image in terms of the order of F, taking note that the resulting family has minimum order if and only if either β ∈ (−1/m, 1/(n+1)] and the family F has minimum order or β = −1/m. We will also see that order is preserved when generating a linear-invariant family from the family obtained by composing F with a certain type of automorphism of Cn, leading to consequences for various extension operators including the modified Roper–Suffridge extension operator introduced by the author.

Mathematics Subject Classification (2010): 32H02, 32A30, 30C45.

Received 9 December 2021; Accepted 29 December 2021.

References

Bieberbach, L., U¨ber die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreiss vermitteln, Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl., (1916), 940-955.

Campbell, D.M., Eventually p-valent functions, Rocky Mountain J. Math., 7(1977), 639- 658.

Chirila˘, T., An extension operator and Loewner chains on the Euclidean unit ball in Cn, Mathematica, 54(2012), 117-125.

Duren, P.L., Univalent Functions, Springer-Verlag, New York, 1983.

Godula, J., Liczberski, P., Starkov, V.V., Order of linearly invariant family of mappings in Cn, Complex Variables Theory Appl., 42(2000), 89-96.

Golberg, M.A., The derivative of a determinant, Amer. Math. Monthly, 79(1972), 1124- 1126.

Graham, I., Hamada, H., Kohr, G., Suffridge, T.J., Extension operators for locally univalent mappings, Michigan Math. J., 50(2002), 37-55.

Graham, I., Kohr, G., Geometric Function Theory in One and Higher Dimensions, Marcel Dekker, New York, 2003.

Graham, I., Kohr, G., Univalent mappings associated with the Roper-Suffridge extension operator, J. Anal. Math., 81(2000), 331-342.

Graham, I., Kohr, G., Kohr, M., Loewner chains and the Roper-Suffridge extension operator, J. Math. Anal. Appl., 247(2000), 448-465.

Graham, I., Kohr, G., Pfaltzgraff, J.A., Parametric representation and linear functionals associated with extension operators for biholomorphic mappings, Rev. Roumaine Math. Pures Appl., 52(2007), 47-68.

Kohr, G., Loewner chains and a modification of the Roper-Suffridge extension operator, Mathematica, 71(2006), 41-48.

Muir, Jr., J.R., A class of Loewner chain preserving extension operators, J. Math. Anal. Appl., 337(2008), 862-879.

Muir, Jr., J.R., A modification of the Roper-Suffridge extension operator, Comput. Methods Funct. Theory, 5(2005), 237-251.

Muir, Jr., J.R., Necessary conditions for the existence of higher order extensions of univalent mappings from the disk to the ball, J. Math. Anal. Appl., 390(2012), 290-300.

Pfaltzgraff, J.A., Distortion of locally biholomorphic maps of the n-ball, Complex Variables Theory Appl., 33(1997), 239-253.

Pfaltzgraff, J.A., Suffridge, T.J., An extension theorem and linear invariant families generated by starlike maps, Ann. Univ. Mariae Curie Skl. Sect. A, 53(1999), 193-207.

Pfaltzgraff, J.A., Suffridge, T.J., Linear invariance, order, and convex mappings in Cn, Complex Variables Theory and Appl., 40(1999), 35-50.

Pfaltzgraff, J.A., Suffridge, T.J., Norm order and geometric properties of holomorphic mappings in Cn, J. Anal. Math., 82(2000), 285-313.

Pommerenke, C., Linear-invariante Familien analytischer Funktionen I, Math. Ann., 155(1964), 108-154.

Roper, K.A., Suffridge, T.J., Convex mappings on the unit ball in Cn, J. Anal. Math., 65(1995), 333-347.

Rosay, J.-P., Rudin, W., Holomorphic maps from Cn to Cn, Trans. Amer. Math. Soc., 310(1988), 47-86.

Rudin, W., Function Theory in the Unit Ball of Cn, Springer-Verlag, New York, 1980.

Downloads

Published

2022-06-10

How to Cite

MUIR, Jr. , J. R. (2022). Linear invariance and extension operators of Pfaltzgraff–Suffridge type. Studia Universitatis Babeș-Bolyai Mathematica, 67(2), 295–308. https://doi.org/10.24193/subbmath.2022.2.06

Issue

Section

Articles

Similar Articles

<< < 16 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.