g-Loewner chains, Bloch functions and extension operators into the family of locally biholomorphic mappings in infinite dimensional spaces

Authors

  • Ian GRAHAM Department of Mathematics, University of Toronto, Toronto, Ontario M5S 2E4, Canada, e-mail: graham@math.toronto.edu https://orcid.org/0000-0002-2278-2686
  • Hidetaka HAMADA Faculty of Science and Engineering, Kyushu Sangyo University, 3-1 Matsukadai 2-Chome, Higashi-ku Fukuoka 813-8503, Japan, e-mail: h.hamada@ip.kyusan-u.ac.jp https://orcid.org/0000-0003-1151-2100
  • †Gabriela KOHR Faculty of Mathematics and Computer Science, Babe¸s-Bolyai University, 1 M. Kog˘alniceanu Str., 400084 Cluj-Napoca, Romania, e-mail: gkohr@math.ubbcluj.ro
  • Mirela KOHR Faculty of Mathematics and Computer Science, Babe¸s-Bolyai University, 1 M. Kog˘alniceanu Str., 400084 Cluj-Napoca, Romania, e-mail: mkohr@math.ubbcluj.ro

DOI:

https://doi.org/10.24193/subbmath.2022.2.01

Keywords:

Bloch function, complex Banach space, Loewner chain, Muir type extension operator, Roper-Suffridge type extension operator, Pfaltzgraff-Suffridge type extension operator.

Abstract

In this paper, we survey recent results obtained by the authors on the preservations of the first elements of (g-) Loewner chains and the Bloch mappings by the Roper-Suffridge type extension operators, the Muir type extension opera- tors and the Pfaltzgraff-Suffridge type extension operators into the mappings on the domains in the complex Banach spaces.

Mathematics Subject Classification (2010): 32A18, 32A30, 32K05, 30C45, 30C80, 30D45.

Received 20 January 2022; Accepted 27 January 2022.

References

Arosio, L., Bracci, F., Hamada, H., Kohr, G., An abstract approach to Loewner chains, J. Anal. Math., 119(2013), 89-114.

Blasco, O., Galindo, P., Miralles, A., Bloch functions on the unit ball of an infinite dimensional Hilbert space, J. Funct. Anal., 267(2014), 1188-1204.

Chirila,T., An extension operator associated with certain g-Loewner chains, Taiwanese J. Math., 17(2013), 1819-1837.

Chirila, T., Analytic and geometric properties associated with some extension operators, Complex Var. Elliptic Equ., 59(2014), 427-442.

Chu, C.-H., Jordan Structures in Geometry and Analysis, In: Cambridge Tracts in Mathematics, 190, Cambridge University Press, Cambridge, 2012.

Chu, C.-H., Hamada, H., Honda, T., Kohr, G., Distortion of locally biholomorphic Bloch mappings on bounded symmetric domains, J. Math. Anal. Appl., 441(2016), 830-843.

Chu, C.-H., Hamada, H., Honda, T., Kohr, G., Bloch functions on bounded symmetric domains, J. Funct. Anal., 272(2017), 2412-2441.

Chu, C.-H., Hamada, H., Honda, T., Kohr, G., Bloch space of a bounded symmetric domain and composition operators, Complex Anal. Oper. Theory, 13(2019), 479-492.

Duren, P., Graham, I., Hamada, H., Kohr, G., Solutions for the generalized Loewner differential equation in several complex variables, Math. Ann., 347(2010), 411-435.

Elin, M., Extension operators via semigroups, J. Math. Anal. Appl., 377(2011), 239-250.

Elin, M., Levenshtein, M., Covering results and perturbed Roper-Suffridge operators, Complex Anal. Oper. Theory, 8(2014), 25-36.

Godula, J., Linearly invariant families, Bloch functions and uniformly perfect sets, Com- plex Var. Elliptic Equ., 57(2012), 1087-1095.

Graham, I., Hamada, H., Kohr, G., Parametric representation of univalent mappings in several complex variables, Canad. J. Math., 54(2002), 324-351.

Graham, I., Hamada, H., Kohr, G., Extension operators and subordination chains, J. Math. Anal. Appl., 386(2012), 278-289.

Graham, I., Hamada, H., Kohr, G., Extremal problems and g-Loewner chains in Cn and reflexive complex Banach spaces, In: Topics in Mathematical Analysis and Applications (eds. T.M. Rassias and L. Toth), Springer, 94(2014), 387-418.

Graham, I., Hamada, H., Kohr, G., Loewner chains, Bloch mappings and Pfaltzgraff- Suffridge extension operators on bounded symmetric domains, Complex Var. Elliptic Equ., 65(2020), 57-73.

Graham, I., Hamada, H., Kohr, G., Kohr, M., Bounded support points for mappings with g-parametric representation in C2, J. Math. Anal. Appl., 454(2017), 1085-1105.

Graham, I., Hamada, H., Kohr, G., Kohr, M., g-Loewner chains, Bloch functions and extension operators in complex Banach spaces, Anal. Math. Phys., 10(2020), no. 1, Art. 5, 28 pp.

Graham, I., Hamada, H., Kohr, G., Suffridge, T.J., Extension operators for locally univalent mappings, Michigan Math. J., 50(2002), 37-55.

Graham, I., Kohr, G., Univalent mappings associated with the Roper-Suffridge extension operator, J. Anal. Math., 81(2000), 331-342.

Graham, I., Kohr, G., Geometric Function Theory in One and Higher Dimensions, Marcel Dekker, New York, 2003.

Graham, I., Kohr, G., Kohr, M., Loewner chains and the Roper-Suffridge extension operator, J. Math. Anal. Appl., 247(2000), 448-465.

Graham, I., Kohr, G., Pfaltzgraff, J.A., Parametric representation and linear functionals associated with extension operators for biholomorphic mappings, Rev. Roumaine Math. Pures Appl., 52(2007), 47-68.

Hamada, H., A distortion theorem and the Bloch constant for Bloch mappings in Cn, J. Anal. Math., 137(2019), 663-677.

Hamada, H., Bloch-type spaces and extended Cesa`ro operators in the unit ball of a complex Banach space, Sci. China Math., 62(2019), 617-628.

Hamada, H., Honda, T., Sharp growth theorems and coefficient bounds for starlike mappings in several complex variables, Chin. Ann. Math. Ser. B., 29(2008), 353-368.

Hamada, H., Honda, T., Kohr, G., Parabolic starlike mappings in several complex variables, Manuscripta Math., 123(2007), 301-324.

Hamada, H., Honda, T., Kohr, G., Trace-order and a distortion theorem for linearly invariant families on the unit ball of a finite dimensional JB∗-triple, J. Math. Anal. Appl., 396(2012), 829-843.

Hamada, H., Kohr, G., Subordination chains and the growth theorem of spirallike mappings, Mathematica, 42(65)(2000), 153-161.

Hamada, H., Kohr, G., α-Bloch mappings on bounded symmetric domains in Cn, Com- plex Anal. Oper. Theory, 12(2018), 509-527.

Hamada, H., Kohr, G., Support points for families of univalent mappings on bounded symmetric domains, Sci. China Math., 63(2020), 2379-2398.

Hamada, H., Kohr, G., Loewner PDE, inverse Loewner chains and nonlinear resolvents of the Carath´eodory family in infinite dimensions, submitted.

Hamada, H., Kohr, G., Muir Jr., J.R., Extensions of Ld-Loewner chains to higher dimensions, J. Anal. Math., 120(2013), 357-392.

Kaup, W., Hermitian Jordan triple systems and the automorphisms of bounded symmetric domains, In: Math. Appl., Kluwer Acad. Publ., Dordrecht, 303(1994), 204-214.

Kohr, G., Loewner chains and a modification of the Roper-Suffridge extension operator, Mathematica, 48(71)(2006), 41-48.

Liu, T.S., Xu, Q.-H., Loewner chains associated with the generalized Roper-Suffridge extension operator, J. Math. Anal. Appl., 322(2006), 107-120.

Loos, O., Bounded Symmetric Domains and Jordan Pairs, University of California, Irvine, 1977,

Ma, W., Minda, D., Euclidean linear invariance and uniform local convexity, J. Austral. Math. Soc. Ser. A, 52(1992), 401-418.

Miralles, A., Bloch functions on the unit ball of a Banach space, Proc. Amer. Math. Soc., 149(2021), 1459-1470.

Muir Jr., J.R., A modification of the Roper-Suffridge extension operator, Comput. Methods Funct. Theory, 5(2005), 237-251.

Muir Jr., J.R., The roles played by order of convexity or starlikeness and the Bloch condition in the extension of mappings from the disk to the ball, Complex Anal. Oper. Theory, 6(2012), 1167-1187.

Pfaltzgraff, J.A., Distortion of locally biholomorphic maps of the n-ball, Complex Var. Theory Appl., 33(1997), 239-253.

Pfaltzgraff, J.A., Suffridge, T.J., An extension theorem and linear invariant families generated by starlike maps, Ann. Univ. Mariae Curie Sklodowska Sect. A, 53(1999), 193-207.

Pommerenke, C., Univalent Functions, Vandenhoeck & Ruprecht, G¨ottingen, 1975. [45] Poreda, T., On the univalent subordination chains of holomorphic mappings in Banach spaces, Comment. Math. Prace Mat., 28(1989), 295-304.

Roper, K., Suffridge, T.J., Convex mappings on the unit ball of Cn, J. Anal. Math., 65(1995), 333-347.

Suffridge, T.J., Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions, In: Lecture Notes Math., Springer-Verlag, 599(1977), 146-159.

Wang, J., Liu, T., The Roper-Suffridge extension operator and its applications to convex mappings in C2, Trans. Amer. Math. Soc., 370(2018), 7743-7759.

Xu, Q.-H., Liu, T., L¨owner chains and a subclass of biholomorphic mappings, J. Math. Anal. Appl., 334(2007), 1096-1105.

Zhang, X., Xie, Y., The roles played by order of starlikeness and the Bloch condition in the Roper-Suffridge extension operator, Complex Anal. Oper. Theory, 12(2018), 247-259.

Downloads

Published

2022-06-10

How to Cite

GRAHAM, I., HAMADA, H., KOHR, †Gabriela, & KOHR, M. (2022). g-Loewner chains, Bloch functions and extension operators into the family of locally biholomorphic mappings in infinite dimensional spaces. Studia Universitatis Babeș-Bolyai Mathematica, 67(2), 219–236. https://doi.org/10.24193/subbmath.2022.2.01

Issue

Section

Articles

Similar Articles

<< < 29 30 31 32 33 34 35 36 37 38 > >> 

You may also start an advanced similarity search for this article.