On a pure traction problem for the nonlinear elasticity system in Sobolev spaces with variable exponents
DOI:
https://doi.org/10.24193/subbmath.2022.1.12Keywords:
Spaces of Lebesgue and Sobolev with variable exponents, nonlinear elasticity system, operator of Leray-Lions, existence, uniqueness, Neumann problem.Abstract
The paper deals with a nonlinear elasticity system with nonconstant coefficients. The existence and uniqueness of the solution of Neumann’s problem is proved using Galerkin techniques and monotone operator theory, in Sobolev spaces with variable exponents.
Mathematics Subject Classification (2010): 35J45, 35J55, 35A05, 35A07, 35A15.
Received 09 June 2019; Accepted 21 August 2019.
References
Chen, Y., Levine, S., Rao, M., Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66(2006), no. 4, 1383-1406.
Ciarlet, P.G., Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity, North-Holland, Amsterdam, 1988.
Cruz-Uribe, D.V., Fiorenza, A., Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Birkhauser, Basel, 2013.
Dautray, R., Lions, J.L., Analyse math´ematique et calcul num´erique pour les sciences et les techniques, Vol. 1, Masson, 1984.
Diening, L., Harjulehto, P., Hasto, P., Ruzicka, M., Lebesgue and Sobolev Spaces with Variable Exponents, vol. 2017 of Lecture Notes in Mathematics, Springer, Heidelberg, 2017.
El Hachimi, A., Maatouk, S., Existence of periodic solutions for some quasilinear parabolic problems with variable exponents, Arab. J. Math., 6(2017), 263-280.
Fan, X., Zhao, D., On the spaces Lp(x)(Ω) and W 1,p(x)(Ω), J. Math. Anal. Appl., 263(2001), 424-446.
Gallouet, T., Herbin, R., Equations aux derivees partielles, Universite Aix Marseille, 2013.
Leray, J., Lions, J.L., Quelques resultats de visik sur les problemes elliptiques non lineaires par les methodes de Minty-Browder, Bull. Soc. Math. France, 93(1965), 97- 107.
Lions, J.L., Quelques methode de resolution des problemes aux limites non lineaires, Dunod, Paris, 1969.
Merouani, B., Boufenouche, R., Trigonometric series adapted for the study of Dirichlet boundary-value problems of Lam´e systems, Electron. J. Differential Equations, 2015(2015), no. 181, 1-6.
Merouani, B., Solutions singulieres du systeme de l’elasticite dans un polygone pour differentes conditions aux limites, Maghreb Math. Rev., 5(1996), no. 1-2, 95-112.
Merouani, B., Quelques problemes aux limites pour le systeme de Lame dans un secteur plan, C.R.A.S., 304(1987), no. 13.
Ouarda, S., Sur l’existence de solutions non-triviales d’un systeme d’equations aux derivees partielles avec l’operateur p-Laplacien, Universite Badji Mokhtar Annaba, (2014-2015).
Ruzicka, M., Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., vol. 1784, Springer-Verlag, Berlin, 2000.
Zhikov, V.V., Averaging of functionals of the calculus of variations and elasticity theory, Izv. Math. USSR, 29(1987), 33-36.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Studia Universitatis Babeș-Bolyai Mathematica
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.