On a pure traction problem for the nonlinear elasticity system in Sobolev spaces with variable exponents

Authors

  • Fayrouz ZOUBAI Setif 1 University, Department of Mathematics, Applied Mathemathics Laboratory (LaMA), 19000, Algeria, e-mail: fayrouz.zoubai@univ-setif.dz
  • Boubakeur MEROUANI Setif 1 University, Department of Mathematics, Applied Mathemathics Laboratory (LaMA), 19000, Algeria, e-mail: mermathsb@hotmail.fr https://orcid.org/0000-0001-5087-5460

DOI:

https://doi.org/10.24193/subbmath.2022.1.12

Keywords:

Spaces of Lebesgue and Sobolev with variable exponents, nonlinear elasticity system, operator of Leray-Lions, existence, uniqueness, Neumann problem.

Abstract

The paper deals with a nonlinear elasticity system with nonconstant coefficients. The existence and uniqueness of the solution of Neumann’s problem is proved using Galerkin techniques and monotone operator theory, in Sobolev spaces with variable exponents.

Mathematics Subject Classification (2010): 35J45, 35J55, 35A05, 35A07, 35A15.

Received 09 June 2019; Accepted 21 August 2019.

References

Chen, Y., Levine, S., Rao, M., Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66(2006), no. 4, 1383-1406.

Ciarlet, P.G., Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity, North-Holland, Amsterdam, 1988.

Cruz-Uribe, D.V., Fiorenza, A., Variable Lebesgue Spaces: Foundations and Harmonic Analysis, Birkhauser, Basel, 2013.

Dautray, R., Lions, J.L., Analyse math´ematique et calcul num´erique pour les sciences et les techniques, Vol. 1, Masson, 1984.

Diening, L., Harjulehto, P., Hasto, P., Ruzicka, M., Lebesgue and Sobolev Spaces with Variable Exponents, vol. 2017 of Lecture Notes in Mathematics, Springer, Heidelberg, 2017.

El Hachimi, A., Maatouk, S., Existence of periodic solutions for some quasilinear parabolic problems with variable exponents, Arab. J. Math., 6(2017), 263-280.

Fan, X., Zhao, D., On the spaces Lp(x)(Ω) and W 1,p(x)(Ω), J. Math. Anal. Appl., 263(2001), 424-446.

Gallouet, T., Herbin, R., Equations aux derivees partielles, Universite Aix Marseille, 2013.

Leray, J., Lions, J.L., Quelques resultats de visik sur les problemes elliptiques non lineaires par les methodes de Minty-Browder, Bull. Soc. Math. France, 93(1965), 97- 107.

Lions, J.L., Quelques methode de resolution des problemes aux limites non lineaires, Dunod, Paris, 1969.

Merouani, B., Boufenouche, R., Trigonometric series adapted for the study of Dirichlet boundary-value problems of Lam´e systems, Electron. J. Differential Equations, 2015(2015), no. 181, 1-6.

Merouani, B., Solutions singulieres du systeme de l’elasticite dans un polygone pour differentes conditions aux limites, Maghreb Math. Rev., 5(1996), no. 1-2, 95-112.

Merouani, B., Quelques problemes aux limites pour le systeme de Lame dans un secteur plan, C.R.A.S., 304(1987), no. 13.

Ouarda, S., Sur l’existence de solutions non-triviales d’un systeme d’equations aux derivees partielles avec l’operateur p-Laplacien, Universite Badji Mokhtar Annaba, (2014-2015).

Ruzicka, M., Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., vol. 1784, Springer-Verlag, Berlin, 2000.

Zhikov, V.V., Averaging of functionals of the calculus of variations and elasticity theory, Izv. Math. USSR, 29(1987), 33-36.

Downloads

Published

2022-03-10

How to Cite

ZOUBAI, F., & MEROUANI, B. (2022). On a pure traction problem for the nonlinear elasticity system in Sobolev spaces with variable exponents. Studia Universitatis Babeș-Bolyai Mathematica, 67(1), 167–180. https://doi.org/10.24193/subbmath.2022.1.12

Issue

Section

Articles

Similar Articles

<< < 23 24 25 26 27 28 29 30 31 32 > >> 

You may also start an advanced similarity search for this article.